Contact us
 

Call us at

WhatsApp Number:

+91-9810230650
  Support Chat
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Over 500+ satisfied customers from SMB’s to fortune 500 companies
 

Leading Data Mining Company

Providing Result-Driven Data Mining Services

At Sparx IT Solutions, our certified and experienced analysts can assist you with overseeing and extract relevant information from raw data of any size in a convenient and financially savvy way. Our data mining experts adhere to the standard act of data integration, cleaning, selection, transformation, mining, post-processing, visualization, and all other guidelines of data mining by taking care of complex business issues. Our data mining company has a strong team of professionals that works with dedication to help you leverage data for getting a competitive advantage.

 e-Marketplace Data Mining
 Social Media Data Mining
 Data Warehouse
 Database Server Processing
KLUv/QBYjQADCv9umCqQAID2BgDwu69AxSCKia/TQoUZg3Gmrxs3JpuQsvR1nhsWAQAAEJZFAEA7 Cb8JwwnsB1V0qxHgW5HKI8wye4nbv5K9irqoHb4zFPAVAL+wd8bJbQvmvDzjXPZV3wwns9xrNZO5 VevGMcvNM3gA63Jsy/kV68YcPHMs719uBg/4MOdoubdlXa63nVuW516Ye1k35mbwAC/LIQ68qJ2X 5WSW827b4l6Wc71tAFbmXv8SwMkc518z5z/Ledm/QAsPJd0u76mAMt7FdmCf3cTaD0Jd1M7eGYpO F7PcajjYmxFFURw551zce+8ZjmVQv34m878FajJm/wzqzUU9ipzzzTkft7j31ptvXop8JDffnO+y c5EcdS/BPeqXHZBurrfWWu+uxXFvEtRab3GUW/7d1eyyWn49qxRNshxLcLOgCHvbFTjLLuxtvRu3 szvb+ADs59OxqD4dC6fChSD94XhSLm7dlMK180vhMpRWht+W4+CXOz8dC7ffVsN6WW5+fcti/8pl KBzfcOvNqGAC12Vf1lXFLUwGVfCC62W/d7Gwl78P4D+oghe0u10XXoEqeGHVqhyFm99W4F3F3nVh d5a/n9/2u54Fx1hxDLqzPL++/TAv3XYGWX/1Y71yY/3j+PsA7Ve5ASqO5d+25dWFZoE/jlebfIE/ jvlZehcba8Efx6+rlT0LVMELMqv1653BKlAFL8ACwB/HMcj6K9eHXyvWVYHfXbk+/F0VvOBddiWD rL/acPxdAHz4FbduC2T9VczG5lYFquCFAbHVjOVfM7x6Zy0/vy0YW70vK3/WB2OrDf8YjK1A/iDJ c5OpJcNVVo+88HP7EhDP5Nb9KxAWc83fB3jhFSiDcQDl/y4wDoB1+ReU47bFgmOuD+BdUP7s26pA WTWTwfltwa0fuyxwflsDZvkFxqz7fQAYZP2VdlXs6z+r+q239S42/rrlXRKeBfi3dVueBeq5nVXw AgiLuRbt/LLwSo5hMA5A9u/Muq3Zy9+z2Jcsy/7HMXg1v/CKjWPwarugzPLeraxg1cszFdhqwSzv XRUIi7niMFQzs8xqZtgg5Fie9eGV94ScQMtryrPzXZbyby8vvPKfADzrzZijLs+SM7kWTXOMwfMM V2IYdJau69NyiyYnan6Kozm3vGZm508rtyLX277k9mVFPkA7s6739AenXzOrRQgArsTwT8vFy9V6 zAsDoP0whruuT8UZnLquT7eXW6255TVzy2u2eZp9bnnN5iT/MOxeSpOdx9Hkzm3Ocqu63laAb0Vm y2tcL8Wv2Mu4YmNOZS3JkoueueU1vZPtG3LZ1WdzpFEAcEWAb0WoVfThFr5Anr0sU7yrYucPxwFY wnnVqgtOYH7bH38fAI5XL+uyqgCPr/cLty7/uQC8G8fgFRe37goG/1meP647u2QosAXbuizXzi9L BuBnzr+tO8/gFqdbXvP6OQDL/HK1nt431xrUZgehWO1f/Xdx3OQj7zLHar+LG7B6/Wdj+WX/zJ0Z ijuLtTL3fczG3Oni5hkMW8EvzLsqzs+sC8stS38Vt7kPu/CK5c4u9k7C84zCZSgLTgAms7HvwqtR bl0WjmWwjVkli40X3DyL5xlHiy/cziwA2u9nmfVwL9lvuDND0X1z8/cmLjZrWX6jsABA+8lQRFMk B8yt26rYOQAP4nyA72X/O/Eshjucd7Ez18tqOG7vDIV1ONmZZbGzjwloyavWlbeAlsxn/5n9h51Z 1btxjJUhMXiWZyuU/CYCQAJAvKti288G2P7z2QC7VbE8bAW7/oXfV37dWAAzlw0QcgwB+bMBUPKb WMQDZs+CX+4/y21fK9nPM1X755l9eBb8urEAFpyAZ8EGms2IExBg+XnlXf+RMwvOheFKyG2u9wu3 cyvDHQ8Mcr3HQ+ksuB1jDRac623//PEseNW+oZBjbI71WVg1f8oC9tnNANaN5VZdcChP2+a3hTsu 6z0hR4pnOYD9n+LgGBTWf0oM/3TBzW8m5PSAz75wO69aCBeiPG1jZ1Y9Wa8FNfKRz3KrOSsdbVt1 tE3bADBSdfw8e5ftnAJcy6shp20CobaxRtzmtrZ5RpzeWJw2KXAbTm9OALe5BU5zBAO0jTLapLi7 PnfZx61PUHMn2U+z85Ekz1GP5jiSfZd8PPdZkqDmOnmO51iS4+blOZag1jYPp7WNHW1t43Dau3Gs /YTa5uB8jDUIOYZpdmdsy6sKC22DcK8A+C0ItU327oD5M3/KqTenNd/cXmgbY6FtrNeCMkGOEb5W MxjEhYzvWZ/Dfe9iX3bDPR6s14LqMT/LAz7eXbXzZzsxuXVhVWzAxwdoNTLr9e7qM3/K/Cmvme28 nA/H8DH7+nCsdwbHMdjP7ezDfc9629ZrZjsuDINcGAZxL3n2K9yqfcXsd7Wuy6ayqtW8VjMr4PPh uWVZuPf7eWbnlY/l70ezf1m3M78t2+F8gFbDffZl3U4Muz7Aa4l9uOXVBcfg/GfdCyNuWdADoGW4 3nbFfhC34BgsD4B2oW1w683EM/ivb+uauR2UaaBtrred3/Z3XtgAherxbPYfF+zCv/O2Li/Pr4/F 4JT1WjxP2z4bUOtNiuL79fPMuhfUycdt9k2W58lPzc+9tQmaHC9Z7V9R5R45t0cOeVtX+znexXYE +Fb0+piz97m5LZKcM7fJkVzc3OZKktN6fIhg0OtjDuqUvx/AamIzA3OeubDsPbN3fRa0WfeyOYjr WfDm5CDy3L6h792ZR+tx/Myfgur+hQ04iADfBvCd5DrfJjfNkezifnC9NHe5dz/PEzzHh9t2kOyc 62Dv3M+sG8c8SGsN8t1l2GdjMfwZphduW5f3KCw0B6msHg4iu952nv3Hu9hYBlVyEO9i5RBKJEuR g3yvis0MWG47q6D4zlA2N7OxD1+8215QPUPxtA22Yt0KJwB2XU/i2Pn1LnbDveyAlIPIH3bhVJb9 Cv6d+fWx2QpWPU/beimeXTRJ3U+Q1CPXOdnJ8uyg5iPXS3EUyxLUnOsgl72nxXietpV65DYfOc05 8cFBAoArrrdlvTO44nnaJpoiuTmIB0Ary2yAl910OHKEdE5zzcPOQ5OD+JlVX7hltCxIziu/oOJw 82djH+7D88qLFhzEu3ML8jxtYyw4xtvGWJQFB/nwxfO0bYMbHDkHeeFW/l6EMjMUz9M2DY6cY3gW H57ZP8sz181wHOTDM+t/6nnaxmlQfHgVzKI8Pp3OCySGQgwhQzGm+KkYsFYogp04kHvhYpATSKOC G4cOBy4+8D3A1OwnDAMnhBtGjPm9Lf8E4tSIIIJHdXSpR3V0nrYRgKuvmyy8HB1o4eXoSCfBo0th 6NdZToJHdxIpj85yEjk61MH76Fzyu+koJ41A1KhSirJqRWWVrALTVAwpPG1DQEBAQEB4A7tTw24Z dksbdktWWlGNgd2pwiFTtBwyhUOmaOmYJBKJRmlMikkr6nGMsCjkH0z2H0z2GhaFRqFRaJReYCXL Z8EovZBEFLsDiKQgLhC9kEQUuwOIpGBxACmICw4HEEnnhSTi3IFICLrsRIiethHECE6EqNgQhFiw JQQxgwGCEAlC2IkQZ3VWFxLFN2dm08GS4ZmFB8aFwbi4jGIwslGF71GnDfeoI5nRD50rp1GFy9A5 YQFpraz1cML4ylqoIicMnYwiCm7Cxgsr4yr0wl4ubEMtWbZassQOkuWU+NSSZRtIJct+kETL6WdK FjjxflZ44+Cw4UNpbFVOdNL1QUI/NUJp7E5I5ajI6Vs0lbKl0CoxXQ7BUhOCaYshqlCjCk9DMG1p CrbkI41II5IDTFtaVsmqFf2oFVxAWvqjRqMPAYsouHd4RRQ87VQRBU8xogr9RqPP8VGj0QNBVpKV ZCUElYGdjQzsTkPDbslKspJIVCpZdirDlY8rWjJFS3vapmWKlo5Jq2j0MVJx6OA74HjaBotgESwK dR1KY6czDaWxHzAZFsGiFf3ez9rwC15rv+C1X1j4Ba9jnTXWWT+jOZLC6BSSwuhUNqYwOv1QrNdi rLOi30Gss6LrbGBJLyTpDiAFcYEXkogF8QISkoiKA0hBvJ7o4QtJxII4nBFsSZqwgLQ0QWw90dKK fgSyc0awJQSxxQhBiCJBjACxgIgEsUZ8IkSZYGfGl2zis7qQjGSKloZFK/plXrKJb0AiiZhZYCQW s8mzLCRiZoFhkMmmzMLskk08VVCw9FcXko9/B9WKfph1NrCoUYWjRhXuaZu2oTwhFOu1p20Jbx5V EJIZ4+ok84w1qnBuYRUsjXE5RL61KKLgFQ8LapvIO1eWh7N62jbxEQVvrLNTRMFnE8YvC5XGXllr 5INfYcXDYvjGwDJEVRiavZ5cPAPKwDoghzaccdVFhivfamAJzoQKj8NNZFFxkAy7pS2n9UQ9qn+F iZj0UEuWREHsUEcsRicYqc0BRPIgiQWVmYlbTgvHJqLgihkqc8LQz5IAO15/Bwn9Djbf5JNgWRpo yaIApi1P2z5qRT9P20CBVTZZNowAk71ueNom8gtexzorgirShgaFZ0E1BQIIUR2xBZaF5FM5Cjvk 2I4dcuyDfIE3Ds+CcowCwW5VYT3RhqdtB9W/Qk/1r7DCZRNKY1c87AFCBLEWMep5nUBPPnGig34H jRkKo71ECqM7ofVELd2KfqoMVwxkuPJ52sbolMb2NB7pd4AQ5fEgbTxSh8WBip8x1BktUfB0tJ6o YiRFQk2BNFJap2IYacy+oxNRcIR4QC8hi0VUYGB62E3L8RIOByuJWFGkMaUajN6BBNmLweQqSBaM Vxd/olTIh0SCxXvHlBGfkdENuKsLVGUUoYTDKsYXg6dtJZKJ4SkRB3LT0Be9IanZH2hpRHDEGP+f jSKhVrzmJiQppBAUY8ohqBAPaIckOsiPTkTBDd8jMTBli4HS2AxVpA0PikMKo1UDquCsS2l0SRVz OOmsn0SdJbqHCfp8EvVD4A+qp20IBGEl3TAVFMG8G49jlMeD+OIRUDV84IupmneyCoZuEN1H9fRL dCg4TkAEIDLOhkXUYI/jWdmhFhjZ7EM0bhSlNLY/uU6jcXHiLGCmT6EnqC8MwqJEIjoIhFnqEslK sjIkikkE3DF/DuwBVSyvjz5P0WcBNuOAiHGjXW63WaVYKJBHtCpgJhr9fhysAYv+iQ76uXAE/R6Z ldjKnLyLddbP8r+nbR1BgqUbA+pooSSKTL2aU969M9doQhLRAyIAGTDmo2BLEB7h7JJgaVK58IrO S80+eAlZLPqANBJAZhNXoRDaw3ja9klm9NOxgUWeJFjas2k5XggyMB2WGYZ8HQZmgSr4j5Uomadt jRMmevfsyyAJll4NmIZvwjnmB+tc/u+6gbBxIhkWIzEl8L0aseHjjJTTSXvaJikRKFwIbGNQmRaN VbfgMwYGT9tOEUeCbg8CCwpCQvRAkBh0C5GnbYpTgypOIp15hQYe1M5apD1tKxVWzQ== Z54xPhmQHhXGgnHVeNpWipvPh0GwIEFR8OG4HH1SnSwbE6b6VkyjR0llLGUwjKEhnhmNRhPGC6xk 2Z4PTNYXD5KIWhVyXCZY+iMKYZ5GMEg4HKzak8bVczYJgha+6APVYPTO2MXgaVtnoOCiFUhjmTCT HQ4kCnEFPk0MIUMZ6YEpe9rm8a+DbOoGSgILEYHxpCSnjbiUJDsBvS/TR8WoWO+rQtHRGtP3tA0e EyzN2K6CSFqsJkODzkofIQVCEziIY1YQimAnBrr1Y9C66BNpjDD+iziQcgh62jYpqFz0eLoYNpyV wDdijJ62id7yAMVUyNNB1rhx6MCoGCB84emrZIEuXOAkpuIyOTSv0VjaqymnHuVp2+IzhprTETD9 BFngf1nTOgggiKsph2CiW9FvZmpE0HTJpc9hpF1/d4KlEaRzwUHvxZTjT0c/WZdDUEKQqnhYjI4H GDGasKgojb2AwJyou8YqKcHSMYKOfpTHJ3XCKscEueg5nHxElwR1spn72mjfBISzIjGUzWyTqsw6 yf+etoleCsfmYLoUD3sKo1NPh0BzEwn9Qp4T6rekNPYqQolcQKRLgqoTSt8iGhPgC4gwgDFR+SyY EBjEDooqgv7vaVvqURjN0iJCCV9Sj4GEGJlAmqJZEdEURzLC1I5+G5nL4wEj7fqCFAk13+hHp442 ju4DmX0d2Eoxulf7cnRnggGjG4ChX+dpm0cRProIRmR0L9IT+ThK0i2VjXgOGNh6ttTKDJKIAgci 5GBg5Jsv1OL8knyPzRfqUCWSfGWqo5/Hglde7WYmk34oIQfhtG0OwIP2zlAyFDaWfYw1mFleFVvB Gnj1WlbRp1353wnAg1bRB6Suos/3BfA8o6yiz/zCl1X0abk6q+gzWkUf3/q+4/oA2o7m6XxROwtO gO3sNhXbmfXML3yZvayafbzbgsgO2m7LvqrY7AXyM/v969cB7F9hn918H+Ad0M4I8AtvRtfbkr1t tfPrWRnWC6fs7GAA+9e24IXbmVXBf0WBfVjA/Ckx+F9gFcW72FiGyzN39WY6rQt3fIw18G7bmt/M KwBWfQz+rxX8whuxjdnUsj/Letn5wzVjHAf8cEgwzEjdf0kzjORpm/wifU8yCLmjkkxFGqFI6MdJ JdKKtMHoGMnwO6cO7sA6rw4sSyUfouETVJ0TqhOXYFLn9Io6nrZ1btfN+Ow1e5JpVBqVDqT3U+Kj hII8dt1sNlEgVb4lhLsRBjS3qyAaDLAbzirhwMVPjPH/2XNiJaQMlfgVGgbP2TMO45TiAwwtGEAT poBR4YfTExMY+Lpzp2Z/HQ3sLr2bjqa6Aa/xSiSAC63/Yg617OPQIYiWLPvDONDvgZYsmxs40A+T wMwOOAMEPCHRHWQekl+go5TRnrZ9JAP//7AbvF4II/z7Upi0k8LomHva5mmbiiGQSTQeAuP/Hepy WgiBKKWGR0JC0s94MBS6Nl0oZGyoS01q9j1tW2BdyqXhwlAXSilSHqOT4NF9xWL2tE2TrIMKUeEE 5KLBUMdQCiRzONF8KgiWz571lc9My2lwMEhVKgMkhuJp24QkMZRz0zFBSpfk/9S/RhWeNh6pp21e 5Gmb6o200p/ygCrqVRKYNFArriJEIRTTgUj+97TtxSFTlg40oy6ZSIFo4kX6JHJ0EIMBRneBoV/3 WXg5OhBcFcDQr9MowkeniWWObuCgaBhcuKOrgKuPDGXsYo7dU6NLzNzTNk/bFDP3tK3iadt/PdQq xVpUaipCDnGipR44YO8VkjwK0SQVyt4JzJJiLWr3KeIhIaIqTJ1HPmipiFEFUTQDLg7lgHGgLqSP gSeykUI0+YlLm04YpEiov0hHBBuFWpHqHJ3jfwYqUh7d58IdHQKGfohQrOg4D/PRCRgODMDV15kW Xo5OsUj4OgIWytFdRvfrJouErzNQhI+Oe1SHp22I2NXoDiCS/9XXY2nXfLwPxcw9bRtolU4piIJS UxFSklkgEwRibUgUXPRHsOJAXTMBzIHAlLI8iPOC9sN5+XCDVAUx/3DC6bAzFXFSuZ2jMn2LQAxq TRBe7EzVIU/bZKKOfvFZ8rTN07bxU7LsGAUzgorZ0kCFUBl4kQxMDIvZh0JAKmTUxYIAiJLqXb2Y Jh1O5VVlrT1tMxEMrR+d0tjv5sE5squRQAUkHhiBwGSbZtQFYQAEVY6Q2aQK5x9BBKK8EtrPIh/A cPEZQ9Ql1DJRBVFgkXVVSyqiQKBLzNDPcGpE0EDm/8+eMdStWtmuepHbWEalhBTZZLcdjOVgsYBV Wm+BTDwayIH0tC01wd6L9ES+l4GVYAEVLGvReDCy8tXNPhTYP72Ap22yogTV0quAVdI0PnyoS4yg o99XsKKvWA4nWqFjKKWRyF3RV5MgcIKcvsWxMi2np20pwiZVMUiRGAqplIAujAnsoBD0T6JeDA5W lImOHRQDUgXBwjVYSWfUwzupuIbEbIOOfpICVZd5IgquVbKJPy5rqOFJybJLDZfHTYojGb/JCho0 664w0q4zDF4ZxGNfXoNbcWEnQtTwAIEaRlyO/Sjo6Pf4NI6twDpZ9uKQakBQkDSqcHXE6kwPL51R sI4464mCaQ/1A+OI9FB/Cg+Vhw6Y7Bco1mvWgiARdac09uMlm3jDc8J3szikMDoR/oOs0WFGG0fH EimPTmKqiI4TyxwdgSJ8dJIBU0V0qkgRPrrRYIDRJWb+v6wxMGVsqE8ZbGVJeG1CXBys6NdNHf0O elRAGUeSgQlI9lqqi4klkJaPVOGia/4ISpYNUiiNDR5SGB0qzAManjgYrQujZeASUrwuSGKADdVH Aol+ZqqjH+YSkoiqntDRz9xwy2V0wSShhApXcRYWSRHsglKybIVJaey9GtgNhmChdr0URneXKtRz LDMwM3ESaxGjGDGhwhufiII/RAZ2O9SSZTsOKYwGPapQx8AES7MOjSoF6uj3O43ApB2tGKeGQoWf Gi6PCC8FRIkLyleaEkiEKCkkEiJ1KPSQQp0qKFjmwXQrnrZxLuQrbTFOXgDkkAR22thfhhRqBohg cITqXyH4giTiqBNqmSWb+FbJJq49nVA7OqjphHr2yHQcndLYX9o5ZxajG4cURvPQGuo5diLEr1Ma W3PWMNSsob6sp2+yMg4pjGZAVq2ZnGYmDl5QVCNRcMdkAHKy7AYEsliwtGkxoqHeIdumlVgkEUsI CAUUzEhk+UJMB0EwdWA6+jkMu9XAdPRrwGSv3dkF/RYKTA8PKYyWSx19HFIY7UCNKhzRSREFL1Bg oC6lGILdmQxmcZl5DvU7ISAUUGQNHKOYk9nrUyOCJ7j6utLB++hQt2V0p0T46Doi5dEJwNCvIzCw j0U3Qtg4Osto4eXoZhfTqYkj6EEALsk/XLBYtOEEsRBM+Xfgw6ovCKCLRiX6oifjSuDztO1gsUnp hKeRgjwGBj4SY/xf1hyM7tedbsuQaQzsNrW/e2QuBvnylSx7IaEpH5aSxyhenfQDB6iicwF9jxUB yGBCPimFAWrkiUv4XwQKShAdOl7BLjxtK7lXCW06BYl2YFejEh9khRky+5kELH/SRJG/4mHwP+M0 kNKep5HS7yOD0iNwNukCGMekVZUEQSMIYpGWbY1Iv16FSLNUCyEJ6qO7QuCjQbmx0asEBY1WqJQa 7Zk5Vm0pqFz0xHJetBgbWLTiVRD6Jj+CfhWIK/BtPhDeHXzgRnfREEU3lq/XLUimEFrhkf9Tj+oQ KggWDNzpKGPjeqlLybIrCiPNmKBSLxUVfJEoiAs6AoJZXUgyfFYXEr75Zr+uh9V7EZxAMqPfylcT xlfWd2EvFosMV77XQQpxVIWGgICqYFB00C/RQT+uKiQ6aCzRSReOBEt7MNTsdxGOwR84rNnjsUOO nchcDLKjGwiRh1J3IA8ELvlDNEsaVaIQ5nkwpovWrotBJo2etsUNhEnj1UOeyYGpGyjNSNkBY4qk v666d+th851QAuKLOJAcsvI4XQwlxgjzIFSLV5dDMIYRCh12THnRDcDgSAkbhbqjCh6dp20dFsrR kRRQowOxUI7ucxI5OgSP6ui2QEGj47KmZNkVWRWC6SE1wEYVThqtJ+qQVQ/SqMJHowXko9aPEheQ llaIKPhHfZSnbeLDsFv6Ydiy0ooijBBGCJ5EWrLsVAtQGnsySmGyh8lew2RYBKE0dqrgCZZOPdCI ARqtJwpiMEBGCqMfjgYjhdEp63WsE+vEOutnhGK9VqBYrwvi7oUkYkFcwCjwFGVIInoHkAKRYEvm SGnUtHRm4SWbuPjKLKwnallI4NHSvbKJZ0CVbOK9gVlZfGWtMlz5voZlIaAqNB4ClMZuNARUL5Hi qsJF0eGqwmJ2iS0oJUpjV16dM7Kc3tjsxIixElLG6c1NCFNBD9OkO5AdGpK/QnMBu4FXufAKUcqx jjLpxGMexIE00OdF80hq9gPaduFYPM+72FgA/JI5/+FZ9t/FeRcb+5nlfABWdmnb927LfpBG3GUv SX72rk2yk11rffKz81FvkRw1aIq8HE89niQpatAUU473sYui3iQpbpPUXXOxa9tK5OSp+anFXY6k yU/x3KcGR805zjk/x1Kb2jRBfoqcyXnnIz9JPXKQ79EsyXM0tTY5yLnuXIvgeHKOLElNjuTupWmC o9lFsxz7SJJ9FLUo6m3qco8bLEnOiWJ5bn5u8yTJrTupT16OfZd6LLm59UiWJViSmzPNs3dOnmNp mqA5jqTJzd532UsTHMvNmSXvpSieZ7lPcI8keZp73GTvJThuzpUl2UVNiqYmS5Brrm2pqUdz79Pk ZKlF0DxNLu5xm72T3ATHk2ty5KXJT3PkoD61bSWSoqnP8yz5aJJgNzmuxT6WpDn2zkGuN0eKpWlu k+8t7g1ukxPNsncu6nKLGhz15s5Tn+RI9vHcYwdJcpvk7uK5R7ODpeZ4yXnJS91FkwTHzW3TPDsv eck1B0m+ubKL4zmaJKlHU4MkqW0a7hRFrkVQFDcn9nLcZtnL8+waFEttS8+xPLc2zU6KG9Tn5kiz NLnIudjHs9z9JM+R7w2W5+bEvTcvT7E0xRHUJOf4SI5ckyU39QiamuxkJ8/Ox1MUQbFzjpsk2c/R 3KMpgn2bveTmqMlu8hEUN+c6J82T1CbvZAfHzrVN0/Um9SmeIt8b1KSobSnHz1ObYj91qTuoOUeW mu+zk/wcSdDk2rYqt6i1HjkvT1CXvO9yFPUWeydP0Cy5tml4aYpk32bJTdA0ubalpVlqkxQ3H0uQ 65ErS1LU/eSiaJog2UWO7KO5eSfFUZMg3yMnnp2Xp9n3HkvQHE1S5KTeI+8nCZqiaI6iaWpx7J3U oCmKe2tQc1yfY+eluMXRLE1Qc+OotzZJvkdxk1qD5TiWY9nPURzLrkHOta2lbWnZ+SmW4Ni1bUWK ZFmCOuXleHZQixp+niRJgnzUtrTcXARLbVudfNTjKYLn5kSSHMEtnibfYHlyUo8k2Q== NdhNUWNq0+TgHrUtxvXSJMeuyQ6OJNc52bfeoy5B8xQ5P0VtnrqPJSdNDmpu5KbZdTmS5d7jyUHN mfsUzW2O2hRPEdQcL8XR3JxrkSzLDmpOHMez3H2XWhT72UHNlSepS1M0eSfPkQRlCndqm4ARp7UN 5WmbQGj+FJTmGBvFQTg1E9JsRvOnWCic1rZXwzE2x8ZsutA2lYbTnO6c5nrnnMk3d5b7+wGshvVa UB4aAEpHXch4HtAgTB4qi6IE8lBWBle9mEAphxITiSZWTYgKAgkxxBNiaMrMPNHTtrRDSPGCMWGB JZDiCSNGyjNDcY2L4jBXoR+Y0NEPnCSgeEfo6Ndd3MJRLMPCTwozHnLVzlmpPJOgcoSOfmAEo3IH Aow1Y/AUV+g+CQy+YJlKisEYQskvEPoG5EO4dQjytA0EQUgG/y5bIWHFwaz0QUc/npKrfdDRD7NA N4/HjlXfAY8lOhoSr9sAPK0GBs2qWxGXYxfskEPlpYvJqaW9bOKKSVeMPdSKg8IQesjYUDtYGBR/ wEba9nrOAqE06YeTwJRqVnamjlCfRB1X3cP0tO2xe0qutqdtYOSx2pDU7FEiVo4df59LtRveSTUQ AucRs0P0c48Es7eGxOjLA7PDCQIDQuJ1jy4HePoWoXUbNOuWVVaZ+BUaB7KCWQ3yziAeW6dxeXLs T+Oljj2fjv1qx34pHJ626cmpFUJCLXDUtPQDTFuOBaTladtn2C3dkClaDJjs9YZ42qa+3hx5eI0X BpGEY6ob8MRJbMJ2CqMZjE5pgJttIEwas0uBgUgiFnwvpw0/qaOfTBR/UIijDS0htA0XpMheR5cd Vv5P/QpR8TqRdC745tGA18bYkfli7grM1UPmcj9ZEAaas04Qo2s16OjHcR0MjOYitO5tJliaRYGl Ug1TySb+SFHTV9DR7wtfCsdOE6XJqaUACbUGyo4XOdAvYdS09GMiW0BaevzEEUpjsXuof5nC6MOi YEU/0PERGNjNQF1iBJJIPz9P2wg2FQSLJB4Y+/mpjTmciGQVBMvI4QREUUoSFBioS2pgACGSEJXX PTaboo3lcmGYn5qSRKnLAeN0WEZTR7/RtUmIpr5NHf0WCCT006aOfprDSIigqaMJhEgLTE6M02Hx tM37uFyTCX0BAVNTXEw48RRP0AkJHb2sUAkd/ciYgIWPIkJHPxhhI3T0Y5hU6KcRQoSOfmF6oHIE T9tWpUTlI0g8kTaoo5/usBIsLWL2objMBNPqEZ25VyKaAwb3eAMXDINX0k+XKVA1rVWH0nCBbsUj MJEwOKij32N8MPhHYcTQwWp72nbQ0c/MSFY7POjotyOP1a5sHCikRKz2QUc/8HOpDjr6iR4JZm+D jn7i5YHZeoLAbNCANbpWh4FqEVobBh39GrLKul1pHPry9Fh9mq+AnU/HZhS8FBoTXr7CqMLjjIHd irIvtgLsM6qjizn8JLeDfinUuzmRIqFWlLBvL1Qd6WmbOEGwdGCH8yLAksMJwcAcTgys1IAceVZT apmxDurIXxLUWeqRqPf/ArPekIC2ObiQM8fR1DY0APLJs3oKLJV62oYRlegXGnT0CyHxuh8Gp8+g EVklBDqNHQUZdDFBYy917ILUqx17UZDQmATwtG5QdiLECaajnxaNKryELiAw+4N0xtgfpFEF7HKi Y2g/2AjuMBSf0dM20tTRr38rgS5lVEKseJvUZWN4iEoBlNG4iOY+Lswr1mbnUC8me92etunTvBrN CbDjyRjMk21SHCV2J64SWbBQq04wrQAbwUL98MBGlsiqQg3zzInyk2orqELNyGhUW49UoQ5DKo6K HVlSqA8ol8E5aI9IoWZlVJBXTC6reR6YBIz0NbD7TGlI3yGF0YeBA/p9oI5+IuyzCUWFTtgIdUKN kI1CTifUn2Ngt6nh8miqIm1Y8SXLblw6oUZNOqGedSGJuD1rqGcLsokzSqMKbzgSYGY9OdL1FFlP m0NxCSDEMIM+UtQUQU2MEg11ps+QUOuxgHyfTMHwCwsU63UILrQBFmrU5XLs+AN3UKjLF46aln5g OsoZbRwjFsrRjQ2FxYnO8Uw2vyoZ9l8yrzoknGKV6vMSKbqSHJdzqJSUtdFUGEKm1IzIzARIALMS ACAgIBwRSQaj6T57BxQAA0A4LlpCTi44IpVJo7E4NAyHxEgK4ygUgygIKoYcc2YCApQzgG6TO/nj T+rCxfhCfN+qP8h8tt3fQ4Hhr98PwZ/0lskK4CulF+1iWs1vNtzrtiL0jZYZKfq9DXvYynJfUPKM v7QhXYxy6Jm0/9tlT4TVTa/AMqOA1AtfLnoN3vNeVQ7cHPyVUiJHbyrmfWwCQMciuDKlZ/8rku2f FZFeIC1/dL2I895oNooiJ1Im3CyY95Na+rYE2F7ZDvQviIXUFzsomSeADFg8Oy2sxSMp1NC9ywLg 5vFetifL4kLt1ctU8oaLj0FF3rrTOHIOIfCNIUzz6swDWJAzN1hroD2WEfBJCEowRICBv6O1yL0s WCu5QMoTcDeYJ/icfy9TRlsigTqULvpCcCd4A+tssg58kRj2MWrfE7hbcuhjaPc0AciyhDYjvAb4 sgU626X7WR0l1Szi+4uzjeygdIihvPISceuj2fx3+s4+eWnHnyi7b3BeHY0x2Ut62O2qx66YKbQW caBDj9L3lsT+wqa3PtF7CyNtdaa32mD3ljlwv0R6q9x6b/XMNA70lgkjK1b3VrXX6UPLGhbQ/Pm5 BCdFgxXEHCWB0MU5WwU+ED6nM91gckjcx0zNwrVdWbfZ2Tgue3s6JrlLN1LFA4Dy4Ycy/kHRVGDj 0IEoaMg9D+E0qYddmDqWwktAR3F0u4YmLMq20Snfe0iam7VNNIRie/NErJZ+WIZAWrwchV4q+iVh h2P6AODep19D7mq2jUa5KnijDNSrTTjG6fG/58CSGyRccM5RJKI+1CKd04C6tOFJBsiW7NIWDOSo XuSPoEh5+OE7nURhVEGI4rUViHA88+EoVBsVdYgdNY0jTEFs7pn6KQzC6IdApv2KsFvRkc2qO5rW SxVoBUlQhk1mfWK6wbUoZwQLs0+L+fNmBdLw10HOpq/+FaLi/IcoKsYiR7xABAhOOSIEPnlJFHez pBi8sGaFzMd51qMOkjsWofJDFo45IzAihJLNqcUSnKoaBKoyZaOQqNLYFlVnH1QZ2zb+DXMjsneI 26yYULaQahmXsuCwq9iNoaVIROjzbjsOyTaj6WxNObxA9JhUWg4ZagdNuaUZj7zR6GAh5TuzyU7q 3FEutCcZNSwHowFtNKAJXToE5lATy4rw8iZFgCVADutYtxQZKiBGe5SVF0dsbWw5lKGDir1YORyz EBOpUIgDqHlRv24Z0PfKrzdbXqxV4s9QxxlYjEuQl30OICOp5ZWZ9eZ3dcHG+Hb9vFEjK/RU7ayI 4XacgAmociga0R42pmH4sU7hE6mUbPOQtiGSnw/kqcxJWU+uAVre76sc4AnCb4XHKrpBpAn982iZ AbwOOx9+bzV8BCgW3saynw6Bb1ELtUZ2KS0XCFrdN9lcAZ1xrKTXN3X4n2fu3MQ0KuGZYsDPc29W wznGlwLVnMkjfE9mtBWRCLPViV4f1ceiV5gAc5DY3eJthcjrjH1yOqLg9IGNa9wBjTc69AcZO2X9 Fq//bvHBPKLX6hP4vLue+7RCTBMZzZY0Ra/2QaWmcnQAiH7gF8mVf95jjMYo1mlnNo60g/TpWBSk +cg7jO6XARqyOclXBW/fQqxTgoii7MAVSnIUpBpebKZV+O8KwG4XUqN0YiQrv8Va9BTBzGPAUAXB q5wrp3qT89GGgEau4h+IUQYL3iw+BSsOItTgQ97Z3pkBcZbedG9m6Z/okfn6HWY2wPcg+AeYIzGb dtrYx6ZkAzSKFG222uU7CAEacoPCuRgFMVA+UpVjYWjg5jD8W0X2sccyeNXDq//llYTXU+FAFLXr wR8Q7evmsItyt8YIzsqo9ftAez4skThk7jtB2TUGI7BUQwDwVBC4tiH1FSqS5fqXzRB8BpOZVmsB hsYBW0J0qDJJ3qL4e3Ri1bDAmh5SRqhFMR7ISlFuBk/1Qi1Nsn7jF7AfD1sD1FMfVtb2P40V+/aF m+13/1Hnqv8BLg7sAhki4LlP5uzGtZZxr6EoMcTjYhXCoFwUGL6Vr/OYm1dSNEoEdvzgIbljmNoG xs46vA9M2QUC+JLFOcZuz3WrOytKQPR4dxaiY8EUpj+7WgneMAUBfMflOCyMINSc/fxHm80WfM2g Ef7vrtPQTsREiHhprv5oabqkNni6rcCe1+XErjl+uK40PrALBVZcn+1DNugYDb35nSmjfAOWCKRp x3duwABQh1jcd5Vpuhr2GOgdjscWP64ia/NkIdqiDqCtXhFsnBG4DAlMI2J7KwHk4pdM5t5B8eZU hVxyN/hvhjEo52XYXt2Wdgobx2H8iS1YDajoj6QaOvce98agYUtMVB0jB7Jpqpb7nle+aPmVxJ8G f5G8r5tzop49IzvtuplDFHzq7SbS3VMNXAxnT0Zi2hHNT8/X1otFZaDn805JZHquiweU94BGsnoc PXB9i7D5Gdf3wweXimCM804lGX3SaCJnvweApog06k7ZuQrfmmn5PNm6oGKwwnCsMJbCZyqSoOqR mA3neEccPjVqf1BV8JI/nZRLbsCOiJ2Cp6m7LWw1n3VsTBbFBJbE+iUtvZuNJmhhyxWUz3lejSw1 coB06ApWRZj3167+eVtO/s4EdHy02RW/tsvVzioDpRFNw7XOinKQQkNAGIBZZGmk+VXWK0c1hqyX m3gwLMfo7eD4xpWyrHwyI+GV2qm02R0mI2k8JIVmTdCrkV8TFNsrW8TBtF3Biq4Jo27GFZkTMqOL N+oXa7AFUyIytIhZPc65iGetiSGW7ubYOYMISV7ebCfrFDWEarWFGEUgyldvU5CMKgiAyQndIw65 vZdZitA27P8ZKSidbIGcw7bphcXFyCThFKS8DdrQRgJO8RP2S5wZzJx3kTg0dYFDPW9bmvoZU4MP WY0UPvU3zNPLWi0GRWaMqoTo5YCV6i8drR1amMo09EiCF1hwwAqR4MllekjiuCRSv9Hk9aX9PKZh FucnOz8ALy0eCec/a3pU43Nc3EiINzCgayh9Oozl6zeiaPdYWh4B8TA3LH4WCRDh8/zzII22X6Br jz1dcCgw2KzU2jiK5x3Do/sAoig8xjEZmEakl2B1cEGCawFBc8+bbmqYyxAEtr6FimvoTdGW55H9 KMHnB6ZSdInl04LxKEa1DTBE5+gQhK6bK+jpNIqhaGEY9iTu1lGW8t4E5II2NQ4VDNuH0mmTYtov 8cBGg2lcnw7RwUdRRq2Rf1a/lDSYaTRmXixOvEdt34TI21O2yo0XBtEM40bpezzaqjFUe6qMZZDz GThNyj/yQCFJl3ovem02ZHAEK1MAc1rUQL6OLHAIBQ7K8ATslXPpY7+gEQ72IJAIpw== 0jLInZiTQQ55TPzaqV0cHcCv9TV6veMq9fgXtp12qKypyBaZsj2byQThIb+CaORr0m5QVQfbfBhd 1EsKvTp4nFm/aDnkD0svxSh06GkxzJFyGNC/au58NUaXZxxdBs0FViOD0EU0hBhavkDQ25IWr6q3 l88CPYZ7UnRg3iYorTPoEqcHKvqo7hV80YMlHsH4M3e9I7KTHrh2YFLeH7ZJT+jlFqkN3knItfXz paJq09UPx6705Yjb134QxWpjL/gMCY+Vz5TE12NYqxE6b78hifri4H8g8GgESxgD/oz3h+CENsMw Ggjl3827PDWBsXak1Vv+2vhmAoAwNd7UP8Ny6vVvEoZjmRoZfuiE+/+3j32nxD2i9c2WaCSVAO8a 9h068gZk+LhRpyLobt6DPQk1FN1ueldZ1s9lF7zEcT4uhF8n2B7un2DvsbeDjCtIBCB98vhNnjNk sYOuUGEoZ+ZgmsX9W1/5LqsmghJczBENgBbONiRprW9mEH+veQ7aBeke18JSG5L0ICuEUnJAga8b odVrrTru0JoeEYQ/HXSGsZsJKbxrN/KLs8EKCJp3zrHOSZ52pcT3jwnLY63Nqf2kQcGg/BWK9tBt nEq8Ybv/JNh7DD3y4u7evQvLnP+b/R236ohtvnV7g6SulNxq8NtInyuCVbH6TjuscivXbv11Yh0Y Os9k/T8nCTEJd/YGeiPJcPIyOuZ1JToSmm+CZifsY/MOpvm3I8FVKIDTBdJA0H3WGa5SL29nL6M2 nTZKe2GpfXs1psyFg2l4K5r3XX3TwGCB9fKgmu+g4xDPITFK69JrK6aT/mpyJ1PfmmgWc1krrEw+ Tl8K6KUrkBfJSt9EbvCZIoLBygpb6aR2wbwB9gA43Xx5Pkp12pyUnGJJ5fsz8JFQa1/HEedHq4lw 5joYU56hAdfOG1RV1FDks0ntjVag6Wyqr/p3YjHMItbBug/HsNWJEiR1yOCc3P5pRqBXsnCI6uTo 0W0kbux5PmFqB+aQSekqhyk9x3s2rEnXPtC3Ve16G4zprYTijOy/ngeZN9v90jYfuPY8di/AePub t/z6SKxjmTaf6F9p1kFBrXL5RKGwZB3z04j3IfQxIR89LRWoBJDXOlpCcDQ8V1xZfzxDeCT1M7ff PxFgA2owlMTrPz1auveFM9jf+DrTKsVVZSDdAxqTMeoMIAetl02Uc40D3KCfoQW4FhZ4SLCRHkq3 I2t3u+R7LI0rXfQvn8XIrVqYN4gusX5/AoXNB4Y5ySgyjYEarLmiTXx5u1TlfP3Q3ZF4nDdu/Kbj 97miFKDR/5ZK40tt88SJ8x+jc2JrZMsEn6opyN1jbUoX9n1iQJWb+Iv/vV+PkfNqoRj03Zdno130 TiuX3zH3CmaerbH1/psHB0eDe7ifNRUfQcuzLl9wfNqF3ID/XBRZ3JFq3OYhKk9XaQLo+KNk1rER DTdw4SoU+IMHwHCVQgNH0RSg9W4R3XyfHLTbnZUagAHSzSeZ+/VUi6jhU4f6ILrN3xPujfM7ude2 cBPqE8+4vYK1jpQTxD5FsvfQIPgvz8+txr7QfSw3dOEApiUq8xHuGbZfkJJPsXPHlXCHuOEigOmx iDJHWO2pr2GgNxr9YJXKM4bs06nvQDF374QFQhJN1hrokH6XZQwMV4AJjfG0i7/8oDKle9y6dsRA J+nVely4roqFC1kUOs4o4U27yKNejpoHPZo4slj66LcmMp8HmUN2aV1JF6wH/WvRo+u0xdAtpnKT sSc0OVhVGzW+2Yc1SBrABSfi27jo3qacrPaH6QTiMtR42TiP2YS075GrpNfNxTL1ft9Vrawbfs/G MkbD4M2syHsP5tktpwD8PGNlGWe31KqUvmbh1iDk/ZQdhuxMxQaAF6qGMPTSm1KGub71IC/nz785 Eqbqm4GXIZlNF//dilpPb2XAyJiDJvSflK80sziqG5NTc7Gfy9Na1znkijdFb8LoufDuxu31tzuA oUJKDnb08rmrEMZPhGnqhcnbmIqyFZOaf0y+oPnknoSxDyHtKux4Z2UTGK5wmnx8BX6+JP3VgWQZ UYC6r9HtY7iW9uUyruhhmZGOYr/pHC2Lr06DpocPtJmECRUCx0I8zEa+z9YUfbu6C0KxAHO/MpAt jTCfpYdXeIxjRu/eeaOH5SOD9bCH7uqe5RMlHvavgu5Yerg/aETFtcvoYW8/7L7mKMkZYImoEjdF ag0VyiWiMuOrDHiAm3i4zPnq0dhmf58KHK4ZzUXcohiRjuhu0hzKKQx/O2Q60ZaIMnKiGChG38/+ higMpPf6E1Fb1rZtPOxfbBIkPdxgMsCAr6V4WG96eMlkeZjigVM8nDsFo/V1sDvcTwtKXzxsDZ9g MT28XXG7QH3In20R9UIeDsr0sP8+Lh5WRsXSw7UfN6sRFkOFiulhPLYrHeYjuoVlJx7+BRNTgx52 tMGe2RoVPazltZZ6ljpF6GuoN2hHejiare8fbFVKXDpAPEx+AUJixZk+OkMqJ7vUEg/vxVm6YCzk BDRkwMXWNmKjQSW9K4d4RwNHwCFahddk72A6LqaHP27XGaGATHYkr6E26GHo4ZHHqQBZ4C168mEG FRAnrYOSoy1Ie2SarK9GVOLhpZaZT9DD4gZWvI5GOSZFD5flJIk19GbRw4Tf37+Nhzk+LY3oYWyZ Kt2GS0vMnYCZgh7W2AOQWARwgHo8LAl86NHDXkWfPqcBiB5WxCgzIPyFHd70J8/Tw3xlwmpNKpxr /skK6MkOT/Fw7J9lR1Rgu8hOV4d/hXIEBEvo4cl89glXdv51u6y60cOdxNpp/ZX4HC797YjiosRc yFeAGPO0eLiajijGyRwk+ieET5Li4ZXXXL6MqPTwAmHSnmLbjr308G8AW68CuU+TxSKuAkcUNkFQ fo6u6GG2dPGDjqkoQg+ji47wh++OKEQDWj4YD6MUHSg9bNXUeBedP+pbPNwlvHWMHmalVnQ8jEGL LtCMhUN6mD/a8ufaDxzHTDl19LAtyqg/Wu/ZSThSzVgQsZ4eHkUHuWFt2vXcBgI4M15jYrGRdDHn BACKh2X70Z2ih73CSSC+ltZGsP+1nLRZK3rYmvOjMKtQso+HYXEXWaKHt0G7FT2SDKOmkx6msmAn 7JMcrBanFuX0sGV6ggSuAcQCQTycuHQr6ujhLEHfQRUPn1inM1WSHtYV8ePhsvs7br3MjkWHkB6W ULYiSd+SRoANKMnWyjccYrBwP6KMNUEnuzXY0zzhw359CYi9GJLk4cxkcelS/hzqDX/zDgXnoByv UL1A3YX4Kl2M4IzYWw3mZSMYNcam315xQ9MMujn+wjk3wcKltfWq/bpw10dp2SS2s3ORjWy66SQe 6C6mgBSuaYnn3bk+zZSAkyVrmxXAqc+NSbwx11eIJT4jGLQjinc8rdqwxAX6SF/ILwoBiZjETc7j l0jKwhJrqFcFx6Jng6uTOy2a4vE/2UdElhiShN4SK3eNQ09Qvh2DU5ZMbTiJU6ijoW4amuvhU1OB a8UkzjqZm/2epSjtMT6i+OEkWxX+KFzCsUYjgFeEb4gqW5oBVzp0nIAEhgCPR9gz1MQCCnoIt4o4 mK3OR8fUzlHmGI5ZPZlejVY2xEEp02bMC2GVL5nFYYGgt+KCCrjCFTCEXsFXP3LXVTVdNgJ9DchI 2I9SASpmOvXmpqrx1zjfhY6mu4aXo0iZUDBSwagYLafey+5tYhkz4nynh2DjQ00HOCv9DRJ2SQy6 EoCv5nCiz9MhWEPH++Y1n2DMnwcBPDIAigaa3ZMNUimbnwwO5CQ45t+ROVJxkBAydCUchun4qfTC 35mfMDuKgx+Dxk9+ewiuVdQ+v/ETdl295yc1CuqXjJ/8+ai0U6QseAkUIKzw7ONs/MSLqVkxLNq1 2bh/PT07/6rjJzz0quXAWHeBYw/GT1OZ/mpjDKX5aXUF8ZHjp6L5YqjXh9xPU0vHfeGyNccYIQhf Px+YuO6U15gdHNFmBDhmvrpREuB9X76vz0Ni2SdVxfGoeny9NQGyAyMplrnkGdMTJ/M58R0nc5mC UkX2ArxIkrwBSwLrftO/zQKDZsyti68tfntZh+TZEi5jZR0wLGmNGWOregtXxRdVBCysHpbAwpSq lqoEYRBkEZucEH9lvicy52aABxnBJcSeKNWoxsEpdiD1ZzZ2M/bUSLp6CLI3KOV+NUV0ZcxSWo9Z 9w6bgfZNLMEipUOdsR5ywBeyOLo0yeJgLh5HWwhBE7IAPbPySv1cu66UYBU6lz/ZwUkUAIIW0jQN Xk4ScAbof4ysKGWIjBEvKNdQEbn1J/88Ch9ARjyifAJ5mhN4EPwsIyNm/X4DsKTenMI1gUfnBN4m f+esjAG4nKWhMgYTGCXjCmTPOBmApRFO6ZEiV/SzLrWnAXgVYh2FmgnceoJYO43RbkF996keLX9w DVNV0xc5nIXm1UB+T7KdyD79VThFRwJiLq0DPdeYG4HNMvTfGRXDwBC/UThMfc/a/IwQ89ncWqYT JyN5lvwhZqUnfzXZjZ5wPuItBx6h84JaMCuVTdfUXSifGFzYThnCBDERR8OmppnlTPft14gx4O3E ka8gpNaHZIE1QqLh7A34MfBB4uYYg8iMBVgSVv/MF34g2HyW/juFL7q44EYw97ICBXghvmSOHeV2 Mkifbu60oCmeZJUoWOlqqmC5gZ5qJq8pCKnvNz+T36lZfw5nXZOhfZXxdJLgTXytdjhi5y6E6Mod WcDI3ZGMckyLlNkBmu2e5OEtJ/xOT8MeuLZi3OnieffMVvze6MDgIvoIFV43VCJkNfBO8NFV7QQI Wz9VlRUgowfS8shNvKPobX0FJnDYxv81nGgMpH2kAzFRLyCzRPfUxJMkcMCOKIJR6A+Wtk/uv1FY gzlPPvN/ZcwNAt5/vzH3FoBRWvqNBxD835KMeWLdf+n7+UwHR7hD1fuvUOX3zabrI4Kmx91/BW7T ZH5e+b/OVRpJVZdRRNwvg3A74WND+ckRF83XPW9PC6WXntCFV1aWdCfDaKJNw6PMnZwJYrR1LjIS hDkf3HCLmd6NZao08nd6JMcPs6xYpi4hjv2pZHTXltkD72g8e0rSnQ310Di1qFEUHNdEcyQXuTa4 GyuMe56ejyJLok1QDNohf66lbW61TROdls5tlWkfLf5BfMq4ALzFaUncokGRT6AFsMJPArrqXMsA 9+G/qim2pRHeNppeyZABd0BoX2KtIqxtfzNEU59l9FKpxe8xnPqO43towOBx+o1vPFgeM0sShMFZ g8rUYsVLe3JhSZaZQgoxx/VpDsdVwtxN+HG0OCOkKQmeXdHryY5LmB3PQeZQ2f9uo8j3P5CXNXtL upXSkZRYlbgSNsvXDr1Bg1mBZVs5on/st/nNcUYaTsGWIqohmNHzpgCJI/vKlY8qCRB04IonnrBV vBDz+BRsSErgExdm3/+j12c5al5F32ZuucHEe/5rINje1ypDOcZVoAyTrRasJ4Z7gw== ovr33zoQITDPGQboZmqXTppckMGVoj7EBwubeJN1A4sBYPDvqEpjYEdquABgslS13xU7XCrZSHw/ APdApIsuALyGQnNcZQDAXQ7lABw50bo2ABifaaV4fP45ABicW7RqSNuMtd2rVdS8LaEaMpmcAzCY p4oMtVAVAHZN1hD68ygAeLDQgAceSVMCrk5F/0mHQTo+LR6Vsq4q5e7pA6kzPrKnSYFC45rrGGbg 2QUPslAAUbs3kVqcL461IvbARQ0UizON1FBRbGjeVDVEvADG15T+EQCki1wAl82i1JAu1keqQfxG ve3QWZr89kpDqD8i3g+2/ngDa1g7IOq3N/orNafPpKKvs3DQE5tfflfqOmdrFaZjokAg3Fd5H1iG jcbcNQC47yT98u5Y/NUtZF/tfOFt7rvcBIbMrhoLtOC+0zYVBZmPaerOvjP/eDLua7gOYvk/ilTd jd8zw90a+PUx8iTPvqcOblG4r4q6/44yz74wcN86XlHMthT7NCn7Sr/cV6u+9zyj5Y77LjTJEB1p jR46nLCMRJAc/G1hZgb38TIjKhpS5s7d5r4Mwfjb1JjNqYH7woQI5APcr0g6iI49cGsEoWyt6PMq f1/5ytTBmxlujJJQJI3cV9oBz/GPTBSN5WcEPFy5r8U5dQJIdTr1Xdw3fnD29jSGCQ68yEgPulra aEDvXv8HCIHr1Tncd+24RsC/G/c1Oof8ZV9Klrvx3BeTW9pmGXYRYhnSH9y3fMJeQd6ss2/AoFmd +47il9JupbhvEcGi13BmUdu6N7hvNFOXokyLxuqTvi33lfu07ouveMacML9Lrgat4hzPQALdMt/p ZV/ntY+iNOESS4+xDSPMyn11L0tblVvB4agtKfsuQoHdB+7LOs5/mzXgkuKSGOG8zHVM575SHkaP fo/rd75ZZDx2oMwjrtTFx1gvwU8X+nGh4oMxfSrvEiKEu13c7To6NwhJCpVU6+hT6S3cbiIT1fXS KpW6I/Ocrnd+UfxBsbTfqiZ1kZsrt8va0djp0drANNBFGWoBQohgcT5zsDWvLzCg/MfoEnuTDFxd ms9tIAGJKgA0wz/zKVdoW6zL7PLuC8VYD0tLmehZjN4plxq4Mzk3RAFOT0+0HyE9VhQYAsHmUzJH uFTG/v2j0ZuGW7Ulo/XOMsja7gjUPBTB1sMQKMDWonq25ZHn0Gq+wAdYLtWtNAgn+PoGnhQS9gmS Oq4hoaxltMHJgQvxCJuoMPPw91QoeovfvbXcdw40w4gHRky6p9pr7d0dPBlA79acwpwFo36bK3da NMreyMuZQCsh72HG4lrx+911LTZ8EzfA37fJxvisXHfUDhx5Szi2HfAEF46vl+Wq9C8WnNBYRDuT s33JkHzAd+OLRTT8jVDEaKK5Tf60aiioxcsVRCDL7MA8Uont0ciW4PAw4uj5EUAvr8HOENqzItMB FZEST+gD8pktPxfarg68hS4RBs8XJxzlCw3xxaAjSAwcR32qiLKbiWMYjFz8OZRMCpmmZfrWKzV6 D/O2FdS7OJLncYEJ51SYl5saLcOziwbhu2elrQIo6f/5r8G8Myox1zu9KJpXMW+P9RBP8+a9BsfS xLyIWdE+nF2DeW31QlaHwL8G7JiXPgqjMoFfy/9kss6IpME6u5b2MKmYWJLkHbs2ez8wUbrz/+94 dRVLiU7i+4Wyr0/CRVBxCuyN1YlrNOgoOKbMEe/uS1cwzDfbDOChWARluAaRG1msd7PLwQAJfTAB 85hkAhoLSxMiqUyKuLFwoDOgKn+d2cmgdHRlyqm4KyFM2x4jTKJ1++Sd61iRgjCfXI5pRXesRClO mcyGdB2bkAmf5+DIZK2Gf9rMJiEwDo3PXMDJYqwNaFqzOJke8uNwsAR9Pk5WhfCTm6ysYdaYtN46 fRxbOQwFDxKN1X1nchITEI3gTkNlQ7owvh+UqfItTl6qvRLmN9TdrauDHcZsZ2DpZKww4S5r5sXc xZl1QpfItPZARXXsOb7qCYByN6Aco4c7FxllZAKWFn6py3J8aljmnyTzaQ6+oIkVyYyuAmsoM+gT VUZQK2qUjXbeTF0AqNQu0nmTWafrQlt7jVLnzb3+QX1Js3xvUdCd93TQSzEwtvPC5cp9dgGFMlx6 pfqWAk37GEm0hHQr88PYOYLe4hRb9CDWTJ2Xak1cT2Ai6Lyif4hBL+ZtzHbnpd1Pv1c0hp03l1Sy J3xLgF6945zR0m+/fdn5pnOrVMkqj1jdn09PhOy3hBMOvlFcdBrRo++tBiZu8fV0wfhc7R90XLzF jIrRelpuzkMp8OoRV/tGqtjwU4g9OO8NmFoKuNbFGoU+z2Yzso7MzgAQEJuMNEwXiFY4hjk9ztpR mFOu0XIdZQw3WyEGlN7AtCroUGxqRVC0JFhWYR5pHFFFiZ4PFAaHL0ApU19wvuWWS9tRyoLgkC/H sLkGPxQEcJZWNVulxQpyyEf5DI7UBsPbejXm+nMk1gmO81LzuYrrcyxgoYVjAt4qOEbbxPFL1BCO yYc5VRHiZOQAGAESA89s4NjGhIcTX3pR4DBObNa64EC0q7bOwkbb5HA2ERyKvcQQ0AAx9ecS1WSi S7P7QzTq+XjN8mdcF9xTD8LZxR0Nf4MSdFeqNbxL1/L/jtWQB8qb//lUotEH8Ih3rMaQvgqEFNeF GqRZY/4gzjAug/Wu9/qA0wtAXE3tuKOzMBMj0FgmCGSd3gtjudX67mga57vGzF6QYXzqFOSPvVNv qCpEY1LUYPbnxSUcXZmeWE3AiJptMh+nS2+upHuqvedetOIuTE3CT0vL5v5WajQB2sfRFhARdRBl oXR5FdVOeINYKzvLjeh01LEe1MPR1J0UhMaJuuET8HkU+BCN7wVqs/Pc0uvnzow3SIHrqmfRJScB +0vlacay6R1SMbwO+ujRAAPjZKTTIFI5lHz6TNWeGqcvztYWgJIiQB5gYg3M6IeJaFfOJ3KZS31S 02NjK0qAfMriNAHdMbZ8Sg1aTy72OX0PWzAZajOUS1glB0sRLpB6uwXSmLmgtaJTukOJxCvoc6dJ pn2FVffHEx/FxEH2OpPUcnKYDY3g64MMx+MZgIEiXwL/9/i4Dt+mlGBgVYXAgOM1fQDXqvBRWg1G /Q3lgHJ7JGr3tVkOOfqONwVBRPc1MJaGxlzNCfIi2rG4mc9M4t+57Ti88uPJwEpgPzbqPFqf912F 2fXhSmWwsIINau8EOAnHtFqpn8FitoZFbUBONTuYSk5p208POtkLWBWAyvvF9hQBvITC8ZU9+CVV EGCA/Iabg2sbKPH402kMiPeY2o78cM8GFT+cN0h+02GSHgUdlKEC30VJXJvusfKakoTixkUIIuQI o+UmYxZ2wcLILgKxfAja51Os4pvREKLzRXfbF3tRxauV5/TMaT0ikz4XDbdAD5dCCG/jdUNdRAOA IsPOptMzl3MuQHJB5YKcxCwT2nT2WBaJ+DEjvevO99OzmHjZlGRnwncpfLU9LLLA6Oh7g+/4wkPF YxuvJAulNl9arYip4GYHk6ZU+s4ct9OELcmet0IF1ufLknpiUunLVxOeg7/Kz/eVCIbR0rfRgOjT a+5hJZz0dYHu+SKDVvrqo3u+NeEx6YvyxaU/XwKa9F1BxcnzDTZur8Wx9A32xaKe71FmpG8gJCzo IcaeL3zZbw+k7+o0AtTnyztumYb0pTAI4vke49KXYLIv/qdi+Ts3bI+2/ZG/jGSLFudKAzdg5NzU 3B5jKA2VogX65aqJRIEnMKcmN1pJ11d/rfZWFoa48J4WzY3jc+H7M2teF+wI+FzjbPn/RrO7f5sq W37/hXVoDHwSUWLo18B8gLKhWxeVOF7DcQ89UG9VNmk9Tn5CmFxPBqCgKVxVPba3OmF4aS5nMz41 CsguGm6w2KuuMUzNb3V5Hbiojefe0FPsT7n67NRwnKnCaN4A/EXvEt58mSnpQaxfpvSTL0EGQxCd SoC2vrCnprgD452PsXVx8O9is8z1py3MyqqbhTCzC13UkdOhUblNCTD/Y4H85mG4BviR71w0GIIM fnKOH1mbeUD7Clsb0gCSQttKsdGxlYYAlhi4Iwo+cnRpW02QOBt7CCDdkUPorfVGUbpwADnUaQj/ 9blb5gIY5c5zYhgH/6lfQwkghS1sYoFcqz6TZQXQxw66XIYyO9M+bVLNlBQN2j7hWb27MUtvmeoV 4eDyZxWWyTJ40iP889eGmUnCii+9lKbs4l4mB2bJDVlVo5NsmOYyTWn9g6Uw19Ur3nBNfB2j64Vf SWdzyLU2lEGuY/quqexAwGkZeQF3dcPgQ9ZdjJCa3Nv/hZhCDt4EpY/DJHTJdNypr6Zm35TCEWDO 6RXOLFW85SQhp2YsVZA/GxQdrhPGzWm0hNQNhzolMEQKxNuBzxmVLmU4EcWnlV3w71JDTRRa9XNA GFwQzq1oze2Jo1QG4u+ijEczEG5h/AesJR8S43EpoUZ6cl1zu4qg6lJBGJuvkhMYaQUB14Kd6flC HvQgAkwgGCU2TsH4tmCDS4dsH3MGJ+3x4RkH2gPXNXT8s45mWQa7hG6SKk/w9aI7O04YqKoOSz7J wR8MTxdaMUcRl4+U1mFaeQVo2oHFR+ujCx85cxS7vBa40uwcGooTNi+PjGG89QFlzrp5YoikRxVs Rx91VSX5aTWhdjikVIfOcv9ZzRK5CfwuHCBHCj9HKsewRupuyB4G30xLvWuKaaIgWzgJS54Wp4hq nfHPnfP24a4kSRknIcnTEFUJXa3HA664/UTBxiJ74b2W8t2JyCEOhNq8Gm0buJkgxYEgrIEanfo7 QE7PjSAkJRkIG0LIJgbw6cP+cCFXG0nYE8v7Rg6+nYzVbXSWqnrGe4a47BRaT7V+alXcyhDU/4Q0 DVciRi4zBqOhDsgnA5hL7FAh+fNA5uqdd3SRmCpEz3Olpwn5CkWtDmB30I/51Y/6GHP4c3AMlC28 R5dCVIcQ8C00w9egSaj9TyPx4WvYIBMfWXFUquVUlxuNxAffW8BITK02FstiLz8YIbFS+wEE9ZEH Rra4LjOBGBxz5BlKdapjmpZXcKjS7gzdgFlyQNulsfOnEz6sG+OGOenkzaziWW5pQt6NT5fwpAuE J9tMubOTRJGvW6htJGsf10OMQ+Tl8iLE3CGIhCq6JUo8R278LWynNKTC0klesXkCuAobORo3+ijB +ULmhlgKQn2SiYLNwftqTxwyTyvk2xYuSS16a2jlZhH9PvgVTIc72+up6LR0bP/YjhVhlxz8NAJb v7/mYeQwYuZX0dij/foaLjkZY5CxIyIILPPJEW5SDEJvlZxd8cB0NWr3mpjCEfF3V/ejtA5dOmAd sRMgMVqt4EyRI27mbWVsxKEqIemZHxtYwSBhmJlqq+/5t0Nfk73FgQxcbX6696Cxegy/OFhRfJbz ngpnDnh7b7XTWKH2PYKzBbojUrszmWRPJPSrcWcoSlW6Pl2KnAh8lNTM6CURhvEC1g== J83kV0PmGf1fqbuhWyWGJvOpqMubA8M/oOiAORw/EkhgUcuU5lZtPbVYjbfWVj+swIohZxFC8EI4 r6A0k1v0jgl/UxRgCZEuHPiCAqxDxFDEMm8dmpoAfWiQ3AO/LXsYn9PgFh9Ny8gMTs1xrnZwbqkD d1pU8sgGmOwA6u2oC/e28uve/T46PwEYV1KDCkedqNVrFEwOTAzpn7PzAmuSx9o7oRbd9SKOhNN7 tgqtS1wD1FeIjlJcTNvRNnJjQ3W0B3Xsdv1PLREjMjKaEwom2DObu5KBHYd08vXLcQJFAKkOmF9u xoxY3xOOg+4J6Ez56K4cOGdsQxUzA0COvzjKOFGzZe+2KTnHx6Q+V34HFT0lVQR4lz9qRgNTgVR8 3HFqHXnuceTneG/6OyjMc410AzjBS3AibOnYemS4Vw60L3IknVLbLIFpG56kJW3leZ8Cp1BRWWy9 DI1ayMJ04g54KedMKAtEldy38D6emw0vaIeDc/zv6PaQA0oVXzxV9Abzl3iHvWTEIUFVsCIouOhe /tliIAeP9eKlWfaUh8sck1RU/DmlqumePOyCDrlmwgPWnV7En09znEFGM7guzdx7iwpuGn7nayTd cnQPAFxAZ8tgzDQitvLs0x3K3/J+Ivc88Af43SyvLeLeJow6OLseCDh5zdVxcTGHX3NojFnBIwO+ DNyCv3h0IRmsudUFvCl6HZsvGMSxY4AxUdDEaSQNG6IujAs1zFp/dPU3DCBLQEQCU0x+RvxNJIMk Z7gTI8QJW+G0mRHc+hIRAwcFnxoObppDWw4rZ5rsxKBjHd1wdM4oSuGKU2kQkQja3g4Gvz4OsFdN 8YEULzeZpcx0DdwB6ssgckLfyE03KwW2R1SJo6hZiBwNLWgPDFb2bZW7NxUK7ENSmZu2uDZYp74U MRZeySVIotHybj8wAI4JUC0QMxitktWZuEZOxkYW5XQjihSTyuVrmZRwe+YSlTBQmCoUyAnlMpbK kNMGv8DaazTOrXjvDaIcH4l3gwol4DyW2cPfx4uZJAFyDiIhDx0ezwgHtVUanm/PB8efDMeE5WJm IRyH1ssGhFnjJcd/MLfzyYQ0b6k2erizhmsPZ7NCW/0M5St4MEr5vIQqrlw4ucbiIRlwGLsV4K+5 imHT1GwptIVw9VqtN2pWSlH2gWOl3KgqnXenzikEF1yB4/hFPNY23qdOa5e3wUEuzzM1zO1HmPff QQX+tV5/qa8czbQeofB8jcAaQWSA9nJ7hAE9cuUKLcTHK6UWihveA/HN9WidKUr5tIUIHmL4itDr g4NEkS0NXCod4MycsYvJVSKw8Q+FgTDR7duzG8J+ZSeRDPpfneWtaMkSHrA00pKaEFCDtq/xLa6v HkagpEf4up06yCOFbtW05MaK0iB8hPIclx9260xe80Y5aBpX6GfLBDANUi9D0R5g+ggAKZ1yOMP3 Qb/0hf1yhaRFhpyO3BmSxgnQnx7Yud3v/9/9hD1h0Lec3z/G0j4cdsorj3ZFccz/m40C0SxKkZ+I GOg1iujte2O438E/c6m4IKobWCNyIdjb8Vy4s2i0q8biq3dEwKdx7v7RFEnpquLzLxWRTiKkASQ+ P9XEQTUgqBmL4q0yLHZljQMPYoWvCdlatNY59ZpnlKqu1spxOlNqTqWLvTG1IzSQRJIdSsCczMXF FY4xxGAvJkOmIiDwN3muUcHiaYILUm7iA4LPWVoShL5zcU3G/gT+7sGYZbwrO2xEd45690UrGUub 49XSHJa7GnGjvzd8L4vKh88lci70FsJI494E5l3sqLvJN2Hv2HcchXlpO032+u2FA3TfUU3Bn3c4 x60hNxFdCtWoBwifprVsjiEA8n6PYU2LvPtZQTMRRXxc/zwQoh7ZHKmWkpl8MfjJVLQI9UFb2k8H T22k6giFt8+Ay5SOzhaWoDUux0OML80NufguYj9vylXkS8WomxnP9tFkHpIB+cGY7PL+Bs7lmJEB bFPbMC33zCQYE48wYoZR7GMQ2TGrqCDAcUl6c9Ks/v0bgESt5Q02XwaMg200UXE0hI6IZiIIKm6h SADRSnHvaqR02AjQxYWJ3SXFB/rOEEQkliwAgBg1MSI80T7ForknBq3jRNorZv/ivVThw5EEtLhP O2nC9g5FMU9d0q5I+AwemdlUVIwCKAy0e8swUcy1+AxWJRrX3H0WjcvrqibGgDG1At/Ukawk8h18 K14eU0ojX5p3xYiDSuUp3q8PB6FlxQWmPdsjh0+VF1r47LETSFiEJB9YrYV1ODPpalMkBopgFegd zSvHJyXremym43njSUx6K2zQsK9GQgn3uwfVjJStL0oo+WB1yDq2f5nyYWuy7kauHLUC8JboCFtB OVfTgxsFYTQaCirhep4xxuqLDnKuHbVug5/fPS6NE4/NYW9jGWrJx7WHI3hXOBFYwKTCv97beCWn +L25wNcdNgdY/xwJUvfJvBSZxrIRjahs2eldjK46ufeCoErTI+wjl/nJ6qePCIJrNONEeFiNkuNT OfJ9q2uCVS0kvlykp0q/AAAbhngbQ2Oh+oyG5KKkFgumrwEa6RZwFsEeEzaWGEQWpCIuf/vHvUSt JggjJkdRUXEp9czN+CkgavraQQ0ZXsFY/uSmLly0bbaXRW14/DGK2qXMElnMRnWdH1HyfYybMv7S Mx9np/Vu8GnmwyXXl/HTY2wymgaGoQfsvsf42C3EtxrAunVvNyZ7HWaKZ+QS7qs2zXIRORCwzINA +W2QBzyDnBOgspq/ZCE7Cn9JACLHTpZRv78NdZ4QbwF/j6uGKIE094PphgI8rQqIivuBJW6p1gux zhqYNuzIl7bmErw7tMH1ki2TQsL5bTkbDBnkQllDDhRHspBSh/Uu3LfR+LBXLCUI2ek5h0ejOvx0 TzEgEvnvfhGLinydbcAx2ecnOYMlhqDFeYc+/4rt+Avoc3ryvpGBoAV0PbycPYOd9GEnrygXy82Z hZ22Q6YuB08LNeRW1R5xFumA3jYaFLW9M4asJ6zQOXPiIhQPItM04XhR9JUQGUawrocrsjRArhxQ 0YfuZv7R9Yz3GruUKi9aTc/pzjEidu8w77Fst6zlp7x5d+MboIe8jqgfSKqOErUXzY8MFG+ly8MR 5zZi/0AZUFBAagqUfH2ggZ/BAWTuoiomilUC/SwMyWghKG4JUEZqohnssW8lNmZDqLTTQ3QTUDOX 9BNjQomHycKRAgTOfgNocJFVAVSe3YC0YXinNAXQfZnynOYfw1AGlYnN1tPhMPcCj6HtsUJ0nv1l MCaNorzrufHO+QKlTETMImMOz6sos+WvDaZmtS5Pd5RnVwIu0B1TXQW8cUauSLKZxZ5yVk020igb ki0YQ3Or4HsC546rjToJH/hqvpwxPPJDXv2pEnBMDUAaAV0DEbAR2Ng4lojlpNhnX+mom8goFW77 xKUSe8PuNJxaRQ/DIlbcg/e4GIBL4ndOh+btMW9LOkFKd0ftn1MjNqsDxJY1AMmg5K65rzmUBywT KuFm0xmYz7REOTMZ7TAht2WAT65zTUb6evGD1JSdCrslx5+XzMY8kuZFGe6gQSz2WKHY5I+K00eO 8u4ETJ8MgU8ixsW9fVa7ORLdYxnzwzF427McPQXhYQPwAHi3HSuToKCyIJKl0AU5Q23jsakBZTL5 Oo63kbX/tgWQ7MchxIKz01Pb6lkX6SFVzrio/xj+ZwrRnPsWhXZpsRGF+wzTvs4gy04ioFL+zbST PhNl6qeHy8IcrcYUq/pUbeB4otlx7TwzZEAT8g+XJjvq3IrQaKPqNujbRpDVLzecibsQ9s8x6DLI 9aPa9wfFuZ3VLb/T1YN2cHZDnjDiOsSUbAxKP8RSLg9P4RVDTEuwcClF+GFWXItDgYSChL/5GAaz c+Ua1ZyAPWz1awSu7P+Mm2LoYSUoWAVAlk+7+5AhlQhFn08XRVqv1MAtGuyKWIPS3NoJRcEL6To2 QaGVGQ7F2BeKzNrGFxm3dq0/Q9cbDA/ZVn15M1dl2suBvdnbX3qXBRAqwNzYZHEFOcxJdYPv1nQv 7I805audQGeDJWGHs4AmXURolYaEFemtVMOmvRqzgmK8QcvLQLAUNIaJDZyX2+fRT+/PLbOMYF7a HH9fLK/myTxBBkWxuiAE2kpemjivxFRYfwwNq+n4YeLkeQ18vFkWMVj1GEQF4IrIQNYKRbz+rop3 z0dp2W4hPQIGBmOHA+ATn4EjHnGI454g/0YkmyHH7Vfaps5GllmfzsYQ5iWbW/GBpJAlqglkCVwk baCV/dGouVCw+HxcxYIC0g8aj5G2lfVdp3CSBRAfYtGyPpMBAJdb5sh7wdM0B5MwogEyaLTLPnUA wdNR7vUNl1X3m6sBRkZZic/GqcQQaiaNYGp6RxKV+t3lMhEEZHL95FpTu63ikiWJ2+qWO3w5PHn6 9o2UFi01h+HLBOZEQ8/NLVU1tSDzWmivHr/JiIvHUUs7buTVXhMkKZboXex9pVV+R2WMkJt8+YF1 lQPIuZGChf0OCajgr4tyv0fQHFOXO6DXBIy7m9vA3ymMGzHBTVD62hmSVCZbvl2HCFogVDsFKsW4 x2srp6WmplcIIND8d4EeOSI2aArYMQZU6tv93/YWjzquIyO8EMEQ4GJ0RQSc9GDYrQYGzpLsmv2K IpFidh+9b3wjhw4J8SBIuU/Jy2sHpQq3qAYihakEUHl6F/+nzlZQaRagiFcC+eQZFAyt86gHTAwf i6E7jp3tE2lY6KOU3BSKfsVlSHoQbkYuxaI+h5Uwp0hPeMUL7FDGUl7lndmcyfqix0EKxTuqUuGS 6xsyLXIT+VVgu0yDx8Ix4d6mSndjooXQqiHQqjg8jnsbivzFq7C/ohOsEE6icC0DM7MXR/chUWfc i7PzXxT+X6+ANYxxACb04Dx0Jn8suQPU3OAIM9dmpN4of+yw6hielAOr+F2Xl1GQPsDJ1e2BRYiv XKNyKOplnaL7IynYKgBx6B1Bi+APDe6PHAwfJnwtlwCF+AuBfYGX+5WwGcZgi8g/L28B8aR5HAOg 7WZM8bGorgPxQ846J/ZfDQY3TSiqiEPTIJO5OI8wjRTIgS5bc3MOpb/VyVGD4aDL0X7T49L++8XN TAa2T0a6/zlXpltWJ8YvxvFHnFqv9RGbOBFk6o1ZdwF1+UtgCUJo4KVWdzpO1yvhLzA7e4Aw28Px /xkoOszli0XI/XknB2R2VDCAwUkrRpc47X5ClaC/9VbLrpQgB04VeBFdO4iZ+VZCj8jrFVAhLF52 2vvYLWHGRC0HdOpz80SKAt38/YkHQZIB0Mh4tQsZoRf1CDYvLYI+f6S7CF78hGnkwlUOEsZV0uA2 drP+vs5Vmoip5yeBqQgcTDRjXl2bAAUk0u6TO78L5HRcSST0xZEN1EfqRrOFhxmOjw8hDOIHFnSZ Ilh3KPMvdTgdjrw9QFsYzFgDrCoOLcQXUnFubLwm1enh2DKhfskDhj8wiyX48f6WlQ== wxrnb8g6IO8/o+ZviMG/4UfYT7NCL7qVQG8=  Pattern Evaluation
 Use AI & ML
Let’s discuss your idea  

Our Professional Data Mining Services

Our services focus on the client's needs

Data Extraction from Scanned Documents

We use Optical Character Recognition (OCR) technology to interpret machine printed text on scanned documents. We help our clients to remove their business complexities. Our expert data diggers are always ready to support you beyond your expectations.

Pre-processing of Data from your Warehouse

In our data mining services, we work with smart strategies to transform the huge amount of data in a useful and efficient format. Our data engineers have strong command over data structure and algorithms to serve all your business requirements with the best possible outcome.

Data Mining for Fraud Detection

We use smart and most appropriate approaches for fraud analysis. We care about your business data confidentiality and find it our duty to keep your business secure from any risk of failure. We take the challenge for fraud disclosure initiatives, offer risk assessment and management service to give your business a glitch-free direction.

Online News and Information Research

We are well-known in the industry due to our security policy and measures. Our modern researchers are involved in various fields to gather the large set of data and convert them into fruitful information that feeds your business purpose. We follow strict safety measures to avoid risk factors.

Competitive Growth Analysis and Tracking

We want you to win! By using modern analysis tools and tricks we keep you ahead of your competitors. We develop a growth strategy to understand the weakness and monitor the profitable actions of your competitors. We believe that knowing your competitor's strength is equally important to know your own business objective to grow over a long haul.

Analyze and Interpret Industry Data

Our data mining company has expert researchers who are deeply involved in data analysis and interpretation of raw data into structured information. We follow standard practice using Machine Learning, Artificial Intelligence, Statistics, Database Technology, and potential patterns to derive insights into industry data.

Acclamations - Sparx IT in the
Top Companies
  •  

    Most-Trusted Android App
    Development Companies

  •  

    10 Best Web Development
    Companies to try in 2020

  •  

    Best App Developers
    of 2020 in India

  •  

    Best BI App Development
    Companies in 2020

  • Top 100 Mobile
    App Developers

Advantages of Our Data Mining Services

We predict future trends and increase revenue

Data modeling

Data
modeling

We select a high investigation model and criteria to find the appropriate matching information as per your requirements.

Fast Analytics

Fast
Analytics

Come aboard and visualize your data in a few seconds. Sparx IT Solutions is 10 to 100x faster than existing solutions.

Big Data, Any Data

Big Data,
Any Data

We explore any kind of data from spreadsheets to data warehouses to Hadoop to cloud services.

Data Preparation

Data
Preparation

Transform a huge amount of scrap or raw data into well-structured information for your business needs.

Update Automatically

Update
Automatically

With the accurate analysis of trends, our data mining services help you in automating data visualization as per the schedule you define.

What Makes Sparx IT Solutions The Most Recommended Company for Data Mining Services?

We Uncover Meaningful Insights From Raw Data For Your Business Growth

Team of Professionals Team of Professionals

We are rigged with experienced and talented data mining resources that can deal with a huge volume of data. We address complex data science problems with hypothetical skillset tailored to all the aspects of the right decision making to give new dimensions of your business.

Accurate And Optimal Results Accurate And Optimal Results

The prior requirement of every client! We deliver accurate results to our clients on the estimated time scheduled. In the rapidly maturing research field, we offer guaranteed ways to obtain an optimized result with fast processing time.

Up-to-Date Technology Up-to-Date Technology

To meet your data mining outsourcing specification we never compromise with the latest tools and technologies. Focusing on your prerequisite we use advanced methodologies to provide agility, efficiency, and speed-up the workflow.

Global Reach Global Reach

As an experienced data mining company, we have 13+ years of remarkable experience in dealing with clients across the globe. We set a high standard in the automation and machine learning industry to cater to our client's needs with zero disappointment.

Multiple Delivery options Multiple Delivery options

Our information mining reports can be served in various formats like Excel, PDF, XML, PowerPoint Presentation, etc. You can read the report in any formats as per your preference.

24*7 Availability 24*7 Availability

Our in-house team of dedicated professionals is 24*7 active to cater to your needs. You can contact us through various modes of communication. We always listen to our client's queries and requirements to understand the business objective.

We Have Served
Leading Brands Globally

What People Say About Us

 

Watch Video  

Bree Argetsinger, United States

  It has been delightful to work with Sparx IT Solutions. They offered quality solutions within my budget. I would highly recommend them, if someone is looking to hiring a website design and development company. Thanks guys.
See More Testimonials  
Google Rating
Bark Rating
Facebook Rating
Clutch Rating
Skilled Rating
WWDC Rating
Top Seos Rating
Good Firms Rating

Frequently Asked Questions

Find Answers for Data Mining Related Queries

1What is the Machine Learning-based approach to Data Mining?

Machine Learning follows the rule that permits to manage the automatic computing procedure which is based on logical and binary operations. We are strictly required to focus on decision-tree and the results evolved in logical steps.

2What is the benefit of data mining queries and how it helped to apply the data model?

The data mining queries contribute to applying the model to the new data to extract single or multiple outcomes. We can pass bulk parameters as input values to retrieve the desired information.

3What are the major elements of Data Mining?

Data mining deals with the information in a multi-dimensional based database or data warehouse to extract structured information. It examines the information by Machine Learning and Artificial Intelligence to ensure the valuable arrangement of data and this information is used by the experts or business investigators.

4What is the role of Clustering in Data Mining?

Clustering in data mining is defined as breaking down the data into groups of similar objects. The objective of data clustering is to recognize the pattern, image processing, and data analysis. Also, it identifies the document based on the collected data from the search through the web or any other source.

Our Awards and Accolades

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Check How We Do It

technology
  "11 mins"

"Definitive Guide to Hiring the Best WordPress Developers"

technology
  "5 mins"

"7 Best WordPress Web Development Trends For 2020"

technology
  "4 mins"

"Why Should You Convert Your HTML Website Into WordPress Theme"