Contact us
 

Call us at

WhatsApp Number:

+91-9810230650
  Support Chat
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Over 500+ satisfied customers from SMB’s to fortune 500 companies
 

Leading And Renowned Web Scraping Company

We Offer Unrivaled Enterprise-grade Web Data Extraction Services

Sparx IT Solutions helps you extract your valuable website data to get structured information and critical insights that will fuel your decisions. Our web scraping experts utilize the best tools and technologies to derive essential website data from any website to provide you with accurate information. No need for coding, servers, or any expensive software, you can share your data extraction needs and we will provide the right services. As a leading web scraping company, we utilize the best methods for data extraction and provide accurate insights.

 Robust Crawling
 One-click Data Export
KLUv/QBYpfwCauwalSqQAGCYDwDwe7eTOrZTUQkye2CAeeKcK7DhTWdJqjo6FexEIgAAiCIAAAIN CWkJfwnw68aq2Oz18bX7fezbVxU/ngb1OAB59TH5v1ZyLGve2VUr/IVljo+5BR5+W3V86RfvcjmZ TwD+Dam8qKZdlrLfjMt36j9ROey7mtj7P7yzKfPs/s93WbFbe0Z+mfD5/Svaryh25XR+mYBxAHIM i2cc/bZkztMzDnbjNb5wtMu9VjOaW73wPLtcPZMHuDDnvpxfufDMyTXH8j7mZvKAL3ONl4tf1+WK 3/pleS6WudiFZ24mD/A0DeJAduXELke7nIffFhe7nCt+A7g0F/tXABzNcf5Vc/67nKf964NiVw7n lwmHoODrpabdTPxmWLHL1bF/We5vVXIrvqhkAhjmsQur5hdGgyo5AVTJCa7Y/d7lyp7+PoD/oEpO gF0YllegSk5YvSs34er4FfAepqzk1dOzVksGVXLCgNhqxnrV8l7Fs5av4xeMreLYpT/rx1b8z2AM 7I6yRHmpVi4cpe3QilmAr99XAPOMBmcB37PcFw3SsxjA9WWQ9UHWl+cPr1xYBX64jv37ZQB8+TW/ cAtk/dj10p71kgNYbQ/D8uqFuadLEBZzgR9eqeSEmazqshurXxXtgio5YTXL4Cxgg3/+PsD7V26A imP5+G35VfUyvcuNveCf5/3F76rq7wPE8gqcBXwXOAtw3zp2wVnAn+fv6/j9sGfJMdY8g3BNs0C4 pucZrunvxq8KpPkLnAUEGFDTbwucXfj7ADKscmMPetjl9Vur5ATFgBU8x6sVDbL+Cn5rkPVX/9ez /FctD4OtlszyHlbtAHz8wi3PAmExVwflVvx6lzuDsJiLpv2fY/LKnWPyisMgPe/a07AP4GGQnutY XsmtP8MslhyDWWAdt2gf1y7cAulZNaPBOm65Lh+D9ByGpYdTuND8bDach1PZtPvCE+6t4wl3mXBl R+XmF1a5y4Tr/KXl+OXkmENruSDkWJ715ZXvhK+a9YoEyJRZ/iqqDXk4qYBdFRfA8Xcsvy7/OQEe nmPyiptfeMXrOIA8j6fJTZP+L3uam4vjGcsr7xHgWfEFhr3a8hmTiycndvREQU6iZjfLmFzXMmWW P6hZu7Xnpd+QK35f9Bu7IR/grV3Ykw5uewxde5qeeFgloBLWq3dVcAK1B4Zn7GUCU8DkX9MCfM35 +IXrmbzdF3a5t47dFld+Xq7XW2IZAO+XLR2GvSrOZBWGvco93Wpt6pbPkGRZt3yGn+hJ1i2fGXkv +8qdNx2KWZpdbL8sw6x5kmPLZ3wtoELyvk/yjUHuiru1ZxxPrqP8XMVuTb+rK34D8G/obPkM7Ion fuWy9cv1dlCs97dk31znPJbf+qVlTkf+wL7TOdmZcDjnFN/VDHDhmX5XBYfytK2OX5nDlSJq8nrl Ye+Z0JeJ6/9klr86yxzOu9yZK3Yzu57N9WyzX7TXcOhlsklewNXfc5xnyas3BoXcwsTFZi/LaxBI IwEyJQD/hlBtyMNtcCs84imWA+oXflVuLcB/OB/ge9p/Ds2x3u/iBqxi/92Zjt1fc+hlouKkSJKl /y4XV89k2EqOYSz/uc59GZZXHOu7sqr+LodeJmcfOym/tQvPYi/NfT+7M4deJh5Wcb52YZl+OY7z ywQA7/c17XY4uZ5NuMtEwQnQL+x+WF6N4DuzzFqeac5iubOCg13fCblShNFuTMHBskwJud1gGVC3 dllu7WMBtPjqhWkeQIvutffU3uPW7urhOebSj5hc07MVio4RAR4BHh5Wue93A3CWh61kOJbjRkHt Pd8NwF9VzI3pGI4JmMFuAFf8/toTcgsB+rsBUHSMUPh5QO1ZclzHl5Drsf8s+H2t3P8nDW5B+3qm en9duw7PkmM4JkDBCXiWXJDRjAZ8N5bfevU+uBDlaZtbuyvKiiuosY+9pt8MSuFo24qjbdoGgJGK 4+vawy4HFeBafg05bRMItY014jjHta0z4vbG4rYJgdNwm3MBcJxL4DZHMEDbJiNeipzcKDfJkW8U 3BxakuhJ9rEs0XGP5ziWJDf7iHLULMHNkSU6oqNZjryb6GiCW9s63NY2d8S1bcNtD8+x1xNqW4Pz Mbcg5BamGp65Lb8iKLTtwcUByDEm1DbawwNqT/0n6Obc3p1zXKFtC4W2seIK6gS5RfhazeQPFy6+ Z/0N973LjV0N53Cw4gqKjPmaHuDx8Oqtv8uJ0S8sq2IDPD7Am6FZsYdXnvpP6j951S4n3ni4hZ/d l4djxTN5jsm+fmce7ntW/LZetcuBZfkDy/KHe9GzT+FW72t2v+uFYVelVW/mtardADxfrl9WhYu/ r2u3XvmZ/n5U+9iFOXX8uhzOB3gz3HdjF+bMMuwDxJXYl1t+VXALzn8XZhfz64IKbuGK35X7P5yC W9Qrn6DacCwPgPfL9cqHFNomt+LLPJN/G7+uGcxBnQXa5orfOn4/J5YLUChyntXe45Jh+XPi1+Xp OvaxmKyy4ornaZtHA+6tUVGdx76uXZhFoX3kJ8lLE0U7ujvK+T7Bk+sm6/0tyhw7x8f+iF/X+zfe 5XI8T9vMAPwbiv284RzlnHienDv5yY2myDnOdbPkxj46QvIn9vMGhdLfD3AzsVnBWc9gmfad2ru+ ++EuzHLuAXuWrEG5B12/Meh7eNbZexw99Z+gSB/LBdwjAP8G8GTJ9ZLk9sgd3CYd8EuCJVmSnSNB kuy+duE55j+dk1znJA37bmyW/8IUy+/r8h0ExeYelLbDPWhX/Na193iXG7ugTO7hXS4NQomlKXKP 71WxWQELfmcUVOeXCedqN/Zl1sMviyIvE0/bYCsXpnAByDDsSZxbx97larjYHaByD/rLsKzStF/J n1PHPjZbyavnaRt69l6eZd/liIJkOXIo56S4S/E0OQdJcuTQsdzmWJqcj2gH0ZIbyz1useznuEUS pH3ntXietpXlyJXkyKElt0nuIUCmuOKXFc9kiudpm3iKJeceHgAvTbsBYlfD4fp+jNzuu4cnD0/u 4Wt3jeV38bog7NZfnjlPv3/+vo69gnt4uH4/nqdtCwW3iN8Ya6LgHl9mPU/bOMjBsXOPWH7p70Oo 8zLxPG3b4Ni5RUfx5dr9NT2D4QvHPb5cu/6rnqdt3AZFh1fJrInDw+m8DVmi1ZAlGrJEa8+kUCg0 UmfSTGrTTmOUQ2H/YLT/YLTfcgg0Ao1AI5WFlSoexcL0QBFR7AweEcyMET1QRBQ7g0cEozB4YGaM weAR6TxQRKw5jwgBKUMPoqdtBDEC9CAm+OMgYniEIFYoPA4iQQhDD2K91qsikvjqS20yVC79kuCw uCwWV6dTi0U2onQ+4rwhH3EidfqlNeU0onRZWh8oHq2W1RpQWG9ZChUEhaWSESTRT9jIurKuSlmX ZV3GWqrwtVSZG6TKCfGtpQovkEoV7iCJldO/lCoyIva0sqbR5YJnwuArjeCorYOUfitkwuAc0NpR kNOvZChmC6FlWkg6BM1MCKqthahCjShdDUG1lcHwyEcakUakBqi2Nq2iVW36US2oeLT2R41G3wEG SXTP8IIkutqpIImuWkRV+o1GX+OjRiOHSFaSlWQlkargzkYFl6thgbdkJVkpFCqVKlylZcrXEy1Z orU9bduyRGvPpDY0+hapGWTwGWw8bZNDckgOgTrOhMHVWWbC4A4YLYfkUJt+sadl+AS/t0/w2yco fILfMU4b47SeUQ1JWbb6SFm2KhtTlq1+KNdvMcZp088gxmnTti64pQeKdAYPzIzxQBERMyseoIiY MHhg5hZNDR8oImLmcEbAI+qB4tHaBLEWTUtt+hHI0BkBjxDEFOPjIIoEMYKD4iESxBgzehBpAn4Z X7Sp16siMpIlWlsOtel3edGmrvmEIuIlYYFQ1CavooiIl4RFQUabLgm1izZ1FSHB2n9VRL7+GVRt +lnauuCiRpSOGlG6p23ahuqAUK7fnrYhvHpEOURqi6uL1DPWiNJ7xU2wtsXVEDvfIUiiUzouqG0h D21ZnU3raZvEQxKd0c5OkESvT1hnEygM3rJayCe/QkrHtXRNwV2IqhBU+y1hvQKq4DYehjecdRVL y5SvLbgE6AGlz6EGoqA0SAXe2pVTi6ad1b9CxExyrKUKAjM31pFr2YhFSmPwiDhIIoYyM/XKSdHQ QBI9MUNdUFj6VRAgx+/fIKWfgeaTeBCsCiMtVRBAteVp20e16edpGyjQ0qYKl0Uw2m+Gp20hn+B3 jNOKVJA3LCS8SprBCBzEdeRiKorIt24QOKjBGxzU4AaalTUNr5J2S+Lg8hWhRVOGp22G1b9Cb/Wv kNJlkgmDUzquwUH8sBRz6nkkwZZ4ZgQn/QwYM5Rle4iUZXNALZpWujb9VlqmFNAy5fO0bUFOGLzD cKifwUGkRwOV4VAblUYqesZwX3Yk0dVRi6aJkQQJ9+TBSO2tiiGEMfsNDiTRD6IhZUGVSghTcHZc zbvxDgwGbXloUaQxtRaMnqEEXbZgghEiisWLFD/CTNAGBILVSc5JHzzjohuAWxeouiRAB4ZWnNmC p20lkmnRMQ+GUsPY7OaP1OwPtDIiOFqM/89GkHAn4lMTkhDUR2o56RBMiIaUQwoZaAcHkuiF34kU nHSlMGHwhQryhoaEIWXZayFNdBZbGrFqog4lnPaLrDNE5zg/ni+yegi8YfW0TUQQUlQOWz8QS6zp NEZ6NJjZjsCa6QNfbN29o1WwVHPoPopUP0SHkmfEQ+Ah23BZTAv4OKIUDmqBEO46QiNP0wmD+5Pr NBoVp40CZvoQyIP1ZREpSuWBcxDNVFdIVpKZoNBMIuiN+m/kzodSeXk2ioY8CbDZBjyMmu2CO80q xUJ9OqEWwSLJ7NjTYA1U9kdw0g+WIennuKzE1gXtXYzTfpX/PW3rCBCszRhYRwklMXTuVa32Lq57 JgOKiJ0PwadgOR0YHhE5whmLYG2SqfCJzkvNPsiCKpVtQBoJHrWpq1CH7Vk8bfsidfrtuaBCSxCs 3dG8Gy/8FJyNSi0/Ps7CokgT/cdMlMzTNgYKC8V89mUPBGuvBs7CJ+mb84Nx2P+7biBknEgFxUhM CXwvxlz4NuPkdNqetkVKBAn4AdMUVCYFY9Ul+EtBwdO2E6RxsF+DgGIiQoQcokhBpwh52pZAM2ni FNqXV1jgP2+9Q9vTNhOhzXjq2cJz+ewRYcSMbcbTNlPUeL4MgpiDBMazgTf7pDpVNCds9a1YZo8R ymjKYJYCQ0QvmZ0ejCysVOEdD0xGKhwkEdUm6NlEsLYnFMK8LSo4MBi025PG1m80CIJXZrfBWjB6 aIwteNrGGcCwG4E0mgczmcFQpg9Y4MvEDrJ0oRqctKdtHf8y0KZuoCSgEA+WTipy4gfWLF3JJ36Z PmpGxUiyTSQ4O2P6nrbJI4K1FxxGEEmK9lxk0lnpi1Kf9KB/uqX9oAg4YqBrPQUtdg== n0gjZPHjg6GkQ9DTNgmGwu7xxBY0m5XAN1qMnraFYtMgtVDKk4HOwDPIsKAUiL7w9FW0QBcm9NJC cZkamddoLPH2pFWP8rRN4RnDveEImP4BLfA/nWkZBERie9IhiOja9JudGRE8XXTpbxZqR8YcwdoH Eqron5g96dlDpp+MpEMwQpCidFzLngcWc4qoqCYMnnCwoCnczisJwdoxAjL9Jg5PCpXXjenB7jqU eELswSrR1GTLeGPEY7MqLRPNTJOizLrI/562hV6JBt9YulQPyZRlqx0Owe4mUvqB/CbcsTlh8BVk AmE/JPZg3QelXwmNBzILigYsZ0qjGAlBwdyYqCDp/562qR5l2awtikyZTTkGDmLlQXmKJ0VMU5vI CFvJ9NPQnR4NFmpHKkiQcHfNdnTrSNPoPI/Z14Gt1KJ7va9Ghx4ULLoBWPp1nrZ1EqGjg1jERfcq O5Cvp6TdWl1Ix2CBtWhrpdSfiChgID4MBsau+cIt1q/I59B84Q5Vochnpsj081jyyq/kebmonknI PThtqwX4D+eXiTvTPuYW1Pxd+c9pQx55FbdcHJZXxSptyNNHKzlTxzLbhjyftQ15vsfI9WzShjwC /KcNeTw8vzU80/gArmf71vcc2At4ObvX9JvhYPGF987HzcktjpyXoGiKZ2mOJsjFvXnnu4u8j7xz UXTBLXZx7GIXO++m2MeSg3vv2B2gck6/oMjp2LNAbpJdLMdNmuAe9wY3F7v44VUNu2DvWxRFcey9 d5Fzzmt5pmM/k/nfKmf31+CGxe8KrGkYFr9qza4cBScw4G29dexZF1Ysq29N+zVA3OkZvIovnF67 KvmvJnzXrvj98P3WbqeOZdXMw0vYlwOo/yQmf1YE+67m+z3KsawZB7i/HeD+doD7Ww+/H7K7M4NY fktZNen9xfAdRL/ARumyPW3zRAb+/yFZ8DshhPTvS1lUTsqy5+5pm6dtqoXABcFwCIz/dyj2lAD6 TEqMTqR8qH/hWCB0r6pIyNxwm5nU7HvaluDCE5YBw1DsxBQnjhFK4Oh+QlF72rZLlmF9rDLiwW4Q RFommEgdSjIeiqji4TOy7bOzghYYClIUykBpmXjaJilLywTVcEwP0xX5X/WvEaWrDIfqaZsPedqm iiEt9ac64Ip6lQQkDNSqr4cQKLVwHpH/PW17bcpUpfvUKPYCwYQkPrRPoUb3KBhYdCws/TpPwqvR geAKA0u/LpMIHV1mljW6AUOCUcD2RkcBV18ZylxFPcMnRoeou6dtnrYl6u5pG8XTth97qFXKrahW VXwYZkRrNWjI3iskdRIhSSqUxRJYJeVW1u5PRMMBZE2Yug5t0FoP4/qZZAZcm4nB0kCxpG+RJbJR IiT5CPZVJQsSJNwfhBOCjcKdSHWNrvH/IhUnjs7D9kZ3gKXfATQnuo3jdHQCBYMCcPV1poRXo0so Dr6OgIVqdOwIf51EcfB1BYnQ0fXO2vC07TC7GJ3BI/L/GnusDZ+O2JGou6dtA63SSf1MUKsqPkqy ykNyOLSMSKKH/ghSGqlrJmAxEJhUVueAsilpQFlPL0hRDvUPJRuOO1sPJxVMblSmXxGYPy2J6OXO 1g3ytE0WItNvRkuetnnaNnpKFR6bWEYwUVcYKFAqA9nIgKSgmHkmBCXCZVUkCHwmKZJcWZOEs6HE K723p23nYbG3g5wweKxx9A3tYiBSgUgHRiAg4aYaxYoGQHDtogsnUXr/otBn8jp4vwptAEOFZwxR bLhl4vqZwCBtu5bWA0agQ8zSr4BmRLCA7v/XnTHc70rh8MrSb+yyTsKJTMJfjqVioFDAKK+vPCSd zMNQetqmmmTvVXYg36vAOqiACdetZDoWmfnqZp4J7KNewNM2OmGCaylOwCiqOhs+FBsjINPvw7Tp a6ZDyUYgLZPSKAS3aZw5EDg9Tr/SWJ0V1NM2VaRJUQpSpWVCMiMfdiGRGxMC8ousbIHBaiLZc2NS QKKIKn2DFLVGObyTqmdKCy8g0y+CUZGyDiTRt4o2dQfbhluWlCrczHR61KQ2kfGTtGAh03LKQu3I RcHrcnBwNi7AFBiGHsQtDxCsIcTV4A4MmX6OL9PgCKxThSsMKcYjBUkjSl9H7r6QIUsuMO1o06Ip qJLhdlgaEDLcH4Jj7WEDRnsFyvXbrYgi4iYnDO540abO8Jsw1igMKctGhN8gY3SWkabRscSJo4uc 66HbzLJGR5AIHV1k4FwP3RpKhI5uLBhYdIi6/09nCk6ZG25UBltVEN6LEBUGbfqRJjL9DHuEmYyj yIDkQ3utFbbEDsrKR6J00VV/BKUKBycTBgcNKcsOEeqBTEcYjNqEsTLAghKx64EYcMPVcVCm35ki 08/CgiKiijwg0+/U9Ao7umAR0AGlq7oLg6gHVzEpVXjinDA4bwsuB0GwcMNeyrJJlyrcdewyMDN1 EksxpxbxgNIZHkiiO0IFlzfWUoU3DCnLBjuqcMdABGu7jYwq9SHT73cZAck7Wi1ODARKRzOdHkXx 5DOZMeZLTQkgQBP1AQGVGxR2SOFWERKs03DCFE/bNmz5UluLkxcANyQBrjL4dyGFewEeFv2w+lcI xp+IOOKEm2bRps5VtKnvDifcDRLMcMI9c1w4DXLC4J/KQWvXshmGlGV3UBvuOoYexI+cMPjetGGY acPNtqdP0i4MKctePNqdkZxmpg6yaZqJJHpDMvA4VTjj8VAoWNukGNNw89B9VcocioglkQgzsYxC lS+0kCAIqg0LmX6NAm8xLGT6MWC03/CMTT9FwkKGhpRl0yUydRhSlt1AjSj9QJIgiY5BWKDYUuzg 8svFomBnXmP9TiIRZkJn5NjklNR+oxkRRMHV15UMYkeXwu+iOyFCR8cRJ45OAJZ+HUHBdSi6kUjT 6CqjhFejm7EmNDNDUoOAXKJ/mFCp7AL6YYlO+nNkQ7tZ0YfdaWSzWzKuBD5P2wwUmtRGdBiph2Ng 4CMtxv/pjMEIfx0KvwtZpuBy0/s7x4Ut0OxXqvAERMZ0VErekniRpR8wSBMc9vM5VgSfwvnwpBIF qLEj2PDHh/RzEDJwfMJVeNpmdo8C0nSJMuXILgZlNtAI9WP2LwiZ/qVpQv+Eo+D/xWkgtb0OI7Vj xwW1R2Bt2hjYxrRXVUS0DwRzaMt4JrRfcSK0WaoEUATl2WRCwLNBmqHZqwOEzEagmJndmTXaXcFQ 2C2poOwW54LKTrwwoE/yIelHecACn8bz6J2BR2Z07H4kutGMvU5BMoFSSof8r3pUJ6KIKhaZQ6YL Deyl2FKFUxBGeyFBqZ4qJroCgZkxHQFBvSoil16vikjXfLVvW0PrxYdOEKnTr+3tCest62NdtlKh ZcoXN0igzYrAEBBYEQoJTvohOOnXVwQEJ40hOKqigWBtD4aa/Q6yKXjDhjVzODiowREXtkA3ugFQ aSh1htJA4KL/Y7ukURUKYV7HYmL3drEFmjR62jYzRBLGiwR1JAambqA0K2UGyymSfttusmsNmu+E EhDjg6HclBTHiS2UFiOsc1ApXiQdgrN8SOyQc9KKbgAmQ0zYKNwkCuPoPG3jsFCNrpx8GN2HhWp0 nlOo0Yk6a6PjAhhG1+lMqcIptCoEVYNagI0onTRq0bRBqxykEaWPRorHR7UfJSoerY0ASfSP+ihP 20RHgbe2o8BlpTYVjUQjUQehlipc3QITBpeMVBjtYbTfMFoOPSYMriY6grVV7zNafEYtmn4WC3CR smxHg7FIWbbq+h3jxDgxTusZoVy/EyjXb8xMeqCIiJkxC4yXMEER0TN4YEQCHqkhpTHT2peEF23q 4uuS0KJpRRGRx0oX06Z+AVW0qZMMS8vqLaulZcr3MSoKgRWB4RCYMDiDIbB6iFRfEdgEp68Iihkb U0xKEwanvMjNqHKKY7PTIsY6UBeoPzUhbP04TJLOUHYpiP6JDAt2Ay9T4ROhVKMdadKpxzoHQ1mw UXZ3SGr2SQuE2EGWWk7RQylgrVAEHGEoeQJboA9IIwI8gwwGrj7wOcDU7CMKA+ijF0bL+T1Of8QB zYigqLM2OrWzNjpP2wjA1ddJEl6N7pPwanQklMDRqbD06yoogaM7iRNHVzmFGh3KIHZ0LjrWkGkn jUDUiGKKtKpNaRWtAlVVBCU8bROJRCLRwRdcrhZ4q8Bbu8BbslKbZgouVxMB2sZuKp7nXe4cgPyi Of/lmvbfxXmXO/va5XwAl3Zp2/fw6/5PhkTRspenOJLmCPJxzJRnL0XRHHsfUZDc/STPkjy3iJKg OIocL0fT7HuXYz9BcYsZbVNJ0uycPE9Ooh08u9jHkovoyFGUn2DvorZlVK7s5CZHEx175yDKRe4U Sy5ubpomSoJjN/lZkhw1TVIEuSiO5TiaXTQ3N0GRLE3Ozy6S5jZHcKN7c5QsuTmC/OQdFdF+jl1E RRQsTy6WJ+8iiZbbBEWUn5uTqDiiJ0pusORipjzJc0TPsTTBLor9RFHTHLs5luAWR21Ty71Hcuwl 2ccSRDNqRttUkxTFXpZbHNEOnlssSZOTYjdRXpqgyEVty4h789Hcu0Q7Ce4ualvMHE2O8pHs5wn2 cTxFEeQoz/C9TbI8t7n53iBpaluMK09SBEWUI82z3KfYR/E8wW7yndE2FS15H3fneyRF0ES5SW5e jqdonuYJcpRrW0blSNPkZ+8cFdHSBEfz5JwE+altKneSYj9PUNwkN01zFMHN+8lJzntJmuTeYElq W0Yk9zmapWmSpQn2UttinNnPkwRL3rneybGjJjdPzkHy5Nrmjnovzw5ubgQ3d3JUPPk57lNERXBz 3RTHk/e+xdI0SXBz4jiiJie5uUWRRElwcyZabvMUz06W6FiC+0S1IQ+IoW0tbVPRctxkN82zFE9w o6LZTVQkS7Ekezl2lGubynUTLUeSPMu+93iCe+SciyQ6mr1zseQg75zcJTpycW9wi3yPu4uZbnZt i3Hn2TkSFTd5ligK8lPs50ly3lFxn+gmR3ODm+sbHcluilwcT/MENzeOm++z7HwUebk3aI6jOZok OoqjSW5w5bi20RNu5No2Y2ibD2DEbW1DedomAKr/BLW5BUdxD269gOo/qUy4rW1xhltwzp1dVaFt qgy3uU1ymyPJzp2dc6jJvx/gZlhxBeWlAZiQKLac64GMSOJQVRKlT2eyKsAra/qom0ksJJrcFSEi CCBEUEeIoeky80RP29ROlOqY8SCBJZDqB6NFqjND9QyM6nJXpR94QKYfKDlAdVJEph/p6pWOcheV fkKYdRC8kpvV2i8HaxeR6QdCLGtviGCs2aKnOkLnOVh0BctkTgpGUFp+AdA3QBtCvsOPp23g51Eu +sdyhIPVxrLaBmT6dbVccQMy/SyKVONw8Fn1GfQYgrMfc8sLwFNbUMi0uwVxNTiGgxoqT1VITq3t aVNPSMjESIY7YUgUQA6ZG+4Gy4LqDthI22K/UYhKEtKAEpjUTOvO1hHqi6zjqnOcng== tjk4qZYr7mkbCHGs+CM1c5iHVYPP3+dScYZ3Ug2AwHq08DD9vROxcJ4pLZt1WHgoOVjAx9zy0dUA T58C1PJCpuUySisTPwLDUFIsbYHml4ODb3U2Tw3+ZTy1wWu0wePd4K9Ew9O2LTm1wgeoBY6Z1naA aquheLQ8bfsKvLUZskRrAaP95g9P29bYqyEOjxHDHpFwTHUDniiZTxhPWfZiQU4YIHcZIgljxmIK QhER88WbN/wkMv1kodmTPhpvWAGlb6ggQXg7YnlI+V/1qwPF60QSqugaB0NuGSOH7oq6w5wrB91p 8lQ5FOxNKzmMrraATL+Ny2BgPBWglvMTwdqsCSylbpiKNnWHmpo+DJl+X/hKNLiKKElOLYQHqDVg cnyokX4HY6a1HRKZ4tHao2eGTBgKTob7mynLNigwbfqBjY+g4PIFio0RRCAk+nnaRqChiCqReWAk 0W9l1KEkJKOIKmOXEY+EGTlAWKDY1MDAQSwfKr/JWH2GNBWWXZzfqpJCKdZggTYqo4lMv9GlQYgm kpvI9FOISOm3TWT67c0CIYImMkUcQltAclqgjYqnbZ4H7rs8IBMOsDXVxYNTT/WDfXBApuwKdUCm XxkTqPRRFJHpJ4u4iEy/hUmVflsUisj0C1WDtYs8bVuZkbWPH/FE4h8y/TaHdVB5DzPPxHUemFp/ 4NQkBZIxWPSON8BaFp2ieroLZs20VpwJwwXClI6AJLLoHzL9HKNj0T/KIoIMVtzTNgMy/c5LZMVD AzL9OMSx4hRNI32YhxU3INMP/FwqAzL9xE7EwnkBmX4i67DwLTlYOFjAGl1to0ClALWMAjL9GDJK y13qHHrz5Fh9mQ/j1miDLzCvxLaE7EcYUfp8Kbg8YZIKngDJGkWmijr8JJiTfilUrDmRIOFOmLCP K1Rd6WmbKBFVODADygqw6FBCMFCHkgJLLShHndakVmYswzry7ME6U70y9f6zMisGCWhbgwu5cxxP bUsDQJ86rZ/AUqqnbZaQmX5hAZl+4WNuuaPg9BUwIG2EYKtzA3NJFZJ09tQGx6Ti3eAKDGJbDsBT y0EZehAlFjL9dmhE6aU04WDh34NcjKSDNKKAJI3gFN4PNpI5i4Rn9LStNJHpR34twTZpFEKkeJoU qyk4QqZAumCwoZocE+oVi7t1uBUS3nJP2/apXo1qBMjxZQzmyTSpjhK7U1eJLFi4VSfYRoCNYOF2 dGAjS3RV4Zb7BU37ScURVOFeXDIqvkeqcIcg1Ublji4p3AYUvOj9w0ekcLMu68cnJGx7ogYnwUKN Cy5HUxnSZ0hZtmHAkH7fh0w/EebRhCICJ2SAOOE+yEbhhhPuvym4/Mx0ejxVkDek+FKFM1hOuFES TrhnHSgi8k4b7lkCbeqL0ojSGQ0EeGlPDbU9QdoT30xcAgcxvKQONTVBUtPCTMN9IesHqOVQPL5P llj4BAXK9TsEFbsAC3fqcjX47JE5KBT7hWOmtR0WMt2MNI0RC9XoRgaCAk3reSarYxUN+y+ZVxkO TrNK5XmFEl2J7gbDQWFG6n5MqmEkT9voF+l7UgEIHpVkKtIIRUq/TiqRViSNZcdIhc85dTIHxnlx ZJka+Q4Mf6DinFCcuSSTOKc4xPG0rYO7btZnr9qTTKPSqGQgxZ5SHyEQ6LHrZjMJAonyK6HcjSzg yWEEsWDA1WxWBwauflqM/9edE+tAXajEj8Ao+A2fddjGFB0gKKEAmiyYBaUb0E5MYODrUJ6a/XYs uLwUa8g01Q14jBfiAFTs/RV1uGWexg7BtFThn6WRfo60VOG9oJF+FoRlZrAZIOgHiM5AB5ewqEQU ptlUVzqGlBmZoREkALMSADAYJB6SCAaj6Tx7BxSAA0E0LlZCTi44IBOJA7JANAyHxEgMwygUgygK KoYcc2YCApQzgN6Vu+m9O+rG9viaReDOpci5f94fUEcrZBbKCMb3OUv0+0RnFgufJfLn6MtQfS30 oM08Wkx2EPdEaQxiuf78wgSO2YdbFiAAS0T/AoZez33FjFCUq7oP3pS2KzbofQx9FA4/GurTJLDe +PoouYA2PvKnWzFCg96BHWiE7h3hn2X7fUC6J4/0IzIAK57GB4VfkRq97crQs3ptFFfLziceUGp0 yOSSYJ53NXmydCM9U0ilkjL8mBTgxYseArs3rERrYm9sKHZhTTAkMkQlfon1ApEVPU8gjZwDgNh6 nTnhgUOdqgx3GS1fETwgMgcRU/HhoVCyidjJH1O4oyUbu2UEAk2DaF4A3Pk7Llifw9hwBlIfOhqw kjufWUy8rssczXXW4XJgBc8YR8QGtYXe8IAvqRb50nPz3pAi3DFJZNbePO54lU49L/cCkGfzsD0c SZt0+HVUqsVrFcn7xlMgm9DhSMrQ8Ipuo3SHJ0MU/3D7LAR/3OR/k8sNoqo6G+IwAn2sboAl2Yv8 7u12PdCP1eWnTVBsf+ylrkPlRASA1bs+8nn1iFYBU6w6ZwK1a3neNtmhr+zqihXDXlJcbvcAc3VU ocX07Q49iWa39PAXLN36W2W38LTVON3qIWO3jKr9gtKt6lF2q47SAqdbhBoy0rBbyKKRHkigYV3y x7XJN9GRtIIlSeJJXeTYKvgG8YQ6015mx8N9lNWsZ3XzeJu9vOPyt6fQP7tGJZU8ASgdaShbCXLL A1sfAzJngNN6iLhf/ehC7FkKYxzdCtsCBTSfFxqIhpjeoyEMWCNEwzC2Hk29wMKHZIgsiZen6cWU X9JWONgOYH1mGhSfXbUbzSCc82mEBqYaYk2cNf8bIiTdQSIF01SHlPrCRKSGBg5XDOs3QEXBLoG9 maNGRV57h2T8kr6TGAtDTEL00NYadK5HvjBCGcJPh/hS08jCFLDmXn9fwWD8c7hP2pv4ayt9raxN 0dTpqIKvjcR6bjJW9kvwrVYVjPBq+FTcflgpIMN/5XPYfEavHSXP39+hyCfyOdxDa3CaKkL0w4tj jpsCFjNda+uwZByaA3U/ekoRcPizQDyn4CKCqdmXWhTFQdW+xiVZGzUplRhGUe8TdZ/ha3OlMIPO xIelzVEJNWsvLbkKC/hatbjxUopiCO7tCXzc1+agcqqpUSSIWkiL8ZDa7eADVpqu8AkaaVWIMDzD gDXRPWiJ9slRFK5LGuyMhqmbO+xf2L4EpAJeNPEQ1AQe0nodKIVPKwjuj+vg5YptjFuIp/GoIi8v D0ddhBTJ2+GgRy9F0l1o9FAk66/oRaJ+Shk+RgYnszjyUksEgEtOxWTyu3npV8Ay3j/fbdSRxS3V /liE7DsGyXT7OLJGIiCSaQx/SKv3HJX6xxJyD4cM6uMylQ956sT+AHKT9wO63iFq71NedfY25EH5 6c6Z1fsnks9+ESENwvAFYcEaOw2xvs0LUfe69nIMCBaXG2JDf3hb7KfB11y4RGcE2pw1dMsZHF3R Wd2pgdLEV4nKHAkPTv9gTOsQlbR1+V3/QoZTSS4BvXu4DN1loo9mHluKOQBU70G5PVzYgjf6ffwY VYvpt63PKuKNxqC5cyZQbnfl9qJIPv0Y1Ys01Zk2lHmmsiQAhH4CFRlof35jZG8o+Ikze2K048x0 WAfShseTNO7jqxnSOQlXZbDZAv8LQVpeLrUKTVIHYjEW49IygLACzIsLqSWdhs3qprAWmVxgVmgv FO/vKi+TU5vOfKSOQOP87/NnJ/MGM3w+sWn8kLjtMZproC4AeR7vDpg+pSc+az4Bh7EcIB0PKOuF nCubX4PYSUtjQw5EirGzJj472NUMMxThkNeBfN4JKdQBMAikNTDhW8XjwkPZ9xcP1HG5S7fro0Yg iv1GmAe4U93iOCXu0WjAVxFN9XIgMx9X5zcE7o6+RiLAiEvSEPif7gg+5KMuFkUye/RyJgTLdWMG bqd1oHm2SkiGUJmCtvp5L5ypvhFiggA0AC0Ux0A80m9jgtRXrWlyOYsTh/tgdRUgMOTwC20dXYzZ X6+iV/9/CcWeoR9638HN56DguL1BuU5e3/EGKYjyYjeHqm37MJZuedcyi8dfw+QQOyK2xusxKTBC 0W8J7BvcPdbEvv96D6cbH9Z2P2F9sU7ypPMJqJDyCoYG+Yd0SeDTJvoquUS8XbSDE+6yyUK4sgEH KQeazgjpgsHZGLWbKJZG118qzZUkZ7xuqxxQgx9KpjR83NU8F9c38SEbTozGeXxn7SiTAstq0gz3 d1bBABaCWIi/yndX4ycMiAPOc4tfZ5EdfGShAlEH0FOvSCDOCLkMiaQR0XorSfniE5nMTVP05jCF /Kpm8E2GcZ/mZbTHuiR1Cg7gBITNtnANqOGOizx0Vn3ccKOBkBi9HSNysekFnvsW0b9ocE/iiAh/ r9nX5rTUAc7AvF1XjAYKvrzdOOhuZAM/4awpIjEZG33V5ztdxYwO9Oa6k54x6nbxhNx74HwWGQ4Y /D5FWGhomsr0wXlBcMx5c72MxgkNW2K/x0bjChpFogw5wbdmrXxiZ6WtGLRhOIYfpTCSjSSomUgc jnPcEaeTqnQflme85MRK2rw2hCNO6MDTzN0WEp/PMDcmQ8GB5r5+2UbvvkATuMtqBex7jlcvW40e Bz24UlUO5s2NVTDeNmjf+b+PTDC7aNeWgLQz24BXoxmGbllhHqTD9JSVzbSojXTWkUZnFGXIVbqJ +4vl2LEcHHBc6b3KpzMS7kI71ZodtiyShlJT6L0YelX+0gRAfGVLMEwb21hRsm7Uw1VG5gQmlfJG /VA1pGimCPEWnFaPxCxiJv8y9GPzyjinDAJsMhU6s5SjdlNtsZaRiCAYoW3qk5pIADAroUPPISDv 5WQp2DH/HyPFEjy3q8GwbTRUvRHZy2d3Jw8agrW5UimqYL9INRv5Qy9i0o8vTKhf1ZbBGiZs8DtX c/4TQAYAejmrx6AwVAiVFrzoxgb7Y3BrR28mZ/Q+5eRFAw4AIvK7KO8/ynDwiVJ2JHl9p8pIm8yg /FTkNOJlLVfHEd+/PUoHZwvcEoIsinwbnJoO52rvGS/6FkszTwi+ARmCytIBxAqkfyKgscQLdLCj vYuHAuOaKkGLo5DULj6mH5AmSlRCTFNsRBAQrPqqqIAXht1caNPlGbAThErFfwH8GoxStI75Er8v 8Bm8qRiu4OG5cDSKFeoG/I09/BTBiOYK6jiNEtO2oDV7Ehf1KEv2JgC5oHkYhwrJ9qECaVOu9hM8 sMHBNC5Nh+jmURTI1rinq0/FNOgfjcQWC/Lu0b03oZD0VJjlDIRByIVxffQ9vY2qr689xe8yyHEN nPbkX+1AcECX2Ip274txOJKVbYc5rWvk+IIsOQgCB23CxPLKJa5j/9MIR3uQ3gjn6jJME3PZTw4L SXSfahdVD8Aw9DUOvY+Tev4ItiN2ONFUnhGZ0p7NcIIQMb+6PPIZ0W5SVEfQfBg6KC8pLjt4aHe/ KEHy9xoYxbTv0NsxnH+5xNFF3zxwNboqJwA6oZoHrkbkoc9vCBGnnHXQp5YWRVVrlw== YxEdxnsydDBoY1neZ9DjpgMdPUDvFRTQrRGPQJGRO7IjxoL+03awSb372nw1dE4uUtnPSajAOn2p N6bpSgjHiPQlwu3DP0jdagMO8LcSnsJnuiXrNX+rEVqyn1YSaeOw9QDwXAXLj4w/4xjcwgkjwRsN xNYQzXubmtSxzobVW/W3sV0CVHlqlqJfjOUQ98+hnbubmg9+yw43bbdPVKaE6USrzZaoZZVA/DXk O3T8DQD2cS2iIlBxHmP2/NdQVG760GT5ymVvvBwUZFxSaZ1g9rhvgd6jnh3srqCUx+jT/U2yZqi4 HaoBC0O2VoJpRqPXusx34asISv1izjcD2i/byENrwzIE+noNObQIoldfW6XaJKZ3WqGuyRkFfN8J bVVrmX8HWnpmPnzrojNAvZmrgFx7nr/MhmBAaAPmHO6dpLorWLzL+i0vZW3y5G8Mijb6d5ppj9/G B+INs/i/T90D09UWd2nd3WaZ877ZVnGjjlg+frelI3Wlyc10v4P0GSeY86vP1WGltLh2+y+c1YGh o0vW/3OSIBZixN6g1yQZtCgjNb6uQUcc8FXd2YmRNseSaW53JJwLpbl0xxlIrN06v5Ra9kDtBbvT mbu0v7r2OVfD21yzTUNv0vyo6hOHBgt/kzdS+aQfx/Y5zFFaX0zbJXSSUjJ3dOqEGU0clzWJla3g 9LsCPYogeWC0Umlyg15TBCqsYG4ruY4uqBtAeMcE5fPz8SqQymuHKxYqX1UBVkLp9ruDONe9JmKF rtOoa4YGdDZvoFVFdUX2ndT8rwJ7Z8PO22/8wDDxg4OlmY/hihNZJamPwalyeyczML3yhgOrJ+cO t4lYY9fn52FzYIhIyi450dN9vJ9hrZL2AfVb1YrbOECXjSrOcP819JHZ2e4habPMtYdj9wWMN8a8 j6+pZx0I3SYSfg+zjivUQ5rvKBSgzmHeLLqXT68s+fTSkkyVwDpbp84JDmBztcr6STIkqVw/JvzI EkU3wIahHXz996MFvo/mj32Nr2+tZFxlF+m+lzGZo6YARvZ6wUI51SaAavo5I8C3sBwPgfPpEcR2 C3WHrjxuaWDTdSLyxkZu2IS5RW6JVfYnmKr5YDMnPUKm0e3BuhZtVpy3ZOCM70a6+x6veR3Lxwm+ /yMKdwZ9SypVX2rIJIaA/1h0E1sXLDv+VMFE7i6oLj3x97CBBJrii/zv/TqizX0PxSApenmG6KJ3 ZnL59exewezZGpX355s5OFqxR/xZk/ERhDzrOgbHa13aPzhGRNWljVQ1bQKnMqEqFVQcJ5fMMhGj SiJOrEJZ/vCsDZftNJAUTRWn3kXf5jFTQUuGs5KYFIB780lNv35oEfV8Ck8cZGcz34ntcVJCrrss 1LX1QcbEXoFGj1SB0icg4z3U+P/d8vM6Y6/CPZbqgHAMbolH9kh77+Du/ssX3hnuStXBuKFLkKIs IlEjLHvG13jsFZVmf5TKxEJSxNfnQfh27xQzhGQxpBp1hHfEbwYOJwA1GtlbF+dkVpm1P9QaOyL9 KXtkXS48asXCdCLCGF8wwJtv5FEnXuc4FL1nW+z40ptPzOeRkUNIsq4JGayhCVp0DO/bInWLArnJ 3p+6plZb7SBWypcaNECFmhMh2gjo31Il7H3JBIG4Pmq8MuUDhPLYe+TkRvUst0y633d1jdYNn5/F GaP9eMysZPwP5migNQD4K8ZWME55qVUsfQkMW/vkPbcdJuhMjasNKmSnMPSymlKmkr41Fi1nNnpb S8Bla+allWQuXjy7lVk9/ecBaGEOmqQ3KV9pZnF0mUxOzc1+Lk/bXedCKt40vAmjeOHdMm4/0F5x DBVeOdjRy+duIBj/EqaeL6gTxlRHW4F8/uHjS7NP4CUs4hDOVWGVOqv5YDgV0eSUr2j+ktyiZkuW hQDqpoxvH39ausWXpEUP54j0fvs93RksdnUakh4+r82WTahOnA7iYSHkU7CmdO7qXi8Ug5ub0kCm ZAT8KD2M4jGLNTrgzjw9DC8yiAl78lY3BJ+2xsPkFcTZ0sNYgpZbXF2PHtb8YbprBia5qywRhUdT RKjBlp9EFO189WMe4IyH/SRfdcl03t//iVOX0XwRyf8R7X3djdGhPMDIt3NGx7iJKBYniu9ixPP5 bYhiIB1cfiKqK21PjYdRiM0l0MNAnPwR8FEVDw+aHpZosh5TPHcSD4NrwaR6HaEO92JB4RoP79on iqaHAVdxL1CP+LPnRb0ggWNwenh2Z4qHnyGo9DDtx41nBOSh4rj0sAXbrTfz0bWFfxQPd8NkNIMe nrcRzGxZHj1sfi2knqc6hfDab5iWlx6O/fd9nlvFHJc2iIeh4AAxXnG/ivSQKsgu18XDBnGW2Zeo O6GpDLhw3yY+aFARb4cQr/NZCzgqq3CV2Q0cBenRw4HuuqsUkNcdyzXaDnqYLTznOAkg+33bmSxQ g7qpkxZOybMJ0qSAJotWI/14eN8ywx30sLABca+jTbYM0cOtO8lIDz0g9LCw9/dp4mHRnwpF9LBN ppG3Ud8SrRMwb6CHseOBQhb14RgtHvYF7vbRwyJEKzuneQ09rOPJGUD6hVpvPidF0cMeMnHXmpze bf7PBFTHDnvjYcoGB0cUW7v4RFfXvkLaBFxC6OG2fp4NVwz/AnBZKulhb2Kt6PoL7jmAO+6IYkGJ /Zcvjhhz23gYso6o6pN5fPTvEZ9GxsP2r4V+Wbn0sJUPaA/3LegP9PBWAEOxyk6f+MWCwQZH1Log aP48y/RwT3RxaBzT4kIPz4tW4HfgjihCA1okOB4WES0UPezV1JEXfXjUl3i4JLz1Hj3MT40/Ho6H Fp2jGSsnPUx5tD3PNQ4c15lyRfSw8JfRPa33HEg4Ra1cEOEhPZyuDqLG2n7rueEJONp3jcVic3kx xRPoHw+7+iMviB5uFiexfS3lg2A7a9l4s6np4XXzjwKwQrlnPLzijqZED0MJWhg98RnWiSk9HGLB lGIfabCKhhqX6eGwemIPuCwglpLx8NZSLJ7Qw0IMQQf6eDjwRjUuP3p4A2aJhz9DYJsDXydGeiR6 uBOyFcv6VjWhNPBUW4tuUNDBwvkTpWCCmsKtLYumCR+W6ov3zMTAEA/byKKikfpzCCL8KHzomIMc ukKhB2oT4tt6McKkwG0VmHcawbgWP/3t5QVbz6CKMHWcuQgWhq6tqraHhDuQlV45iaPIL0L2pv+d xOPuBjaQwhotMbI7y+dpCdhoyVpVkbr6JDiJoXEdPFjiZgiGbkRhx9NOlpZ4fz5Sk/JBERAXJrHo eZaIpGtZYhvqgXC4+2xw2PCzi/Y3fiz7bpQlHpTQNgLGXQ3iCWqxI5uUvVZLT2LldLTCTdlxqT61 4eBqm8Q6TuYW39MSpbFEjjQ/HKF0yx/tFOH8awRiijhBRK1JU+5Kd5PDVKIhEEg0B4YaJllB341V JIrZx3wMQw1xlN3muNuT2QH0ytA4jzINg3nnRuolj3BYGnrrD6hgwVoBP+i1++q2cZ2UZmsjgG8D 4oL9WCtAnRi23gdUFe411O7C+HQPy3KgWCbeI9USFR/LKbZs9k1sbjbK950lNo6/6QXKSotlh12S NFUC7qtZIfruHYJQ6FDdvJ8naOeHJYAjDQikgcR7xp9Uo/CT2QzZBw7SPLKAqawGQgajC8drOn4y Xfi15qcQjmLI89D4SbR+4FqPWpVr/OQaV8/5pCtH3ZbxUz8blXZCykYvcQUIdY79mI2f5jQ1KoFF OyEb56+naafL6/jJx14FCTRWTHC8m/GT1aY/LIxcb35qVcFtxPGT0b486vVF4NN0Pj5f6rd5cIyY 4uvdB0ZJd7I8ZgmO+B4CrJzPtSuJFMIn39fz0pVBSlUfNKpeuU5JYPTA6BrLLHnGbuJka85P595d BrNUsbbAciTBbID4wBZH+k6zgOlmfO1i8xTbl6wj8dxIF4wNGjA4cGNm3qp0hQuOy3sCFqOHX3Nh T9XEGkLYIVkEIScEXhlfH5k9M8DKjNAZsacZNeofcEoRSIExG7OLPRGcrhaCzHOUor+aHV31bCnN zizbwwyo9k1XsJPTAe1YFw3Aly7OWppMYDDHLn4tvqABFffVrHbVC3e2Zx+siury535wjvInKwb4 Z8fLggReBuwfxxBfWeoyYjbkbvdELqMOIo/fC8OIEZvXz+PtBBYDPwvJiGd95wA8lzenUE9galtu zyTvqAUxABPa0i4CfAJnKSQCWVMCB+Dfx5HYoeQLSFalYH0AFkGsH4dxAgchdaxdMtoerO/q/EeN mV3DKjV97VJeaFwNGOhJEpi9L7wKR/pzIWbqONBfNSadYTNl/He2DdQYAhKAsxrfE6XPyC58plxL YOMEIc+cH2JGOjmtBmv0KM5HkeWwDB3frgUNqFjvmomFYouBk/AUOUyQHeIIpamBu5zVwdQa3Qc8 KhyNCkKd+JDYp0azNUzbAYcAX33cJGMwxAEBlhD6n0EHHwjKnlH4TviLtja4Mc+9GF8B9Y8v8iKg 3O4R+LPfnTZvijeTEgXjTk3FsNzeU3XDNYOF1PdhZ7I7Kojiw9l2ssN/zfhpEjwU3wE7lO1cBCGW c4fBMFKCSLI5JqFldlhim97z8DyJLNPDgBinra1wulDePaATv092IKOI8kEFdw2VFrLaPBS8aFQL AZLWT5XkBQjGgQzI5CboKLqwvvQJHGzyf2UmGl2klaEDgVIvhFuiy2u2SJLFw46qNSz1AFHb2/Zf LazR3BOc/V9G5ka791+cyH0zYByFfrMBfP+3J2PGVfffFb7y6SAq3Anp/htd+Z1mU/bJYNOz2H/1 25Gbn6j8349K66Ka1Sju8zs9uF2R2JBzMk2LBnDPb6SF6yVv7MWLCksAl2H41MbwUbadnG4xwjsX FguCcQ1uuJLZ7MYSKu7w9x4mAQ8zLZXJKaH//qQxuh7N7D93EJ89k3Rn9XvoRM1vFMuMA2g50kWu 7+zGAlzLEwpHkjrR5igG6Yo/09Igt2KmeXwN5jYCad8q/0HTnXFR5sVpTdwiTJVPHAUwbp+/u+rd y9D18K9yS21L68w22vbZkIEmj9Ayxfo0LLt+DaIZBC56GeqO3w9OZcQJ+tAIwOOlN0PhkTyGHAmP QVgNzoxTpYX2+a1PxjKFmxh461MIx7XE3Ob5uUSQkVBTMpyd09cTHsDajpuLbFvZv98my/cOaDiY q/d0K3RIRrvauCQsnK9NuMEQSIUxtHK4f8zH5t7Gecjigg3VqEbhRo+ZAmSp7FtOPgqsnaDbF4dz wjzwmp/Hw2JDNIFv8jR7248kL8uRoYqmInOrBnbH+Y8AwT1fCyLlWO4FCpT4uWAtApQRFJy/38aB cNxlTvVA12e7eNI4NhkUUuqDE1jWxGuiG1UVAHbxjmIdA4BTUwkAe1fVHF3R6VJ9jgS0BuB6RPqc AsBtUGiAyxMAviZcB2D+iYbTA4BXSisvx2fFBICX3aJXCdZmPe1eLkfNqwqVI5MpMg== AIufKmJQk60AsN+yJtA/bwCA9YcGv+CRNG1wlXT0r/sYpCvTIk4pS1gl9tDDQKoDJLsnqV1rKndd +AwUcvFYls/JZff2qPn7Qlirwh7wUFPUYrxI9Sy6ERrSV4NjFwzjNXk4AnjiYirwCqMoBUHEWhfV wjOIWDsERJPfd6UN0R9+71ZDf8nAysoOXvOjmRWUessztOjZGQLKifktbyB1sS5ahROXKCgW7ku8 D2SCjXrteiv39UanvTtGvjrqsi9xvlab+3pmAntmV48FJ7ivbU/VSOxlmpKy745/Ihr39YkDWP7P faoQxemZ7bY29vpdeaqz77eDzz7cV1/dj6IcZd8AuO+vV8a9LXk+FZR9mSz3BbrvIc9o3cZ9O08y RXiwRrUN57MjUXGci61bzIX7FMwozYZkrONhc981YfyZmlpwFuO+YCE6/gBiVqQXIqgZuBUzlK04 +oya7yslZc7gPbIbo0QokjfuC+sAhfhXJorg8rICGlS5L9+cGQNIHDplNO5rZXA2TxqjH46TyADn US7tZ0FvUv8DIJfrLT7cNzeHGiWLPe478RwSzL5IlntKua9Npmyb6djlaxnVaLlv6sKOeXlDZN/8 oE967st/mFJ8+HDfRLNDr2llcWZrY3DfKaYviTIdpeaTAbjcl/4ZmC8+4hkz4vx6Mxo8xiWagcx3 e7jzmn3DZh9VKeG2kB76NwwUKvddsiyBlUMWR6K2o+yrGAVeFbgvxjj9b9aIW2pLYnvyStVBkftO 9zBg+z1K3/nEIUPZoTqPVGCXTmO9Ajtd5MSFmg/m7qngS+gW7vR3oOtofykkbVBS7aBfoLdwsIlg tOsdHIN1B4Y5Xa98pPWDcrRHX00iNDeVtUtApzH7aHqBGb3LfPkFeBPBfj6BYWsbXGBM/Edjib3D gG51kZzb0AAkkAM0t5/hN1fAWqzb2OUCF1tUYgQtZY2zOHynQmowMrkdFWWTnh56PxpggxcYyFLP p7CM8IyMj/oHvzedo2pTRum3ZZC13YmbeSiJrWc4EB4sIfdMxiOH3mV7bw/w1jVUKivX4soG/jwc 2wnqrpjbHwPc9CT56qReyJWdoJHwF2GhaBtpadRy/xLSDIeDAYF0T7ZXUneXMaaE3s21GPMajEgq Q45j0fpHI7//ojHp/OQZk7DiB+4u7tkQurONft8YJ+GzubojRoDJW8ZYFl8luGh8/UpW5ReO4ETk RbR5ks2LDCkDvmm8qE2DO4TaB2yaTuQvrBo0sHjxCRHQUh2YIZWgLjrCEs55Rxw+PWJcfhLYOQ57 HjEduhFJwglVOD6750cR22XMW7pJBP/4Yv1H2aBh3BgwkomBY6hHKyJrM3EIg40uvAwli81B02K/ 1Si1wcO8hAX1MI5EPFbVhKtzzIuqRjjCE1+DdRlnpWwzaO5/Ti2Y151KNPGdPosuspi3+XoI7Gbz wovjLTFv9KxIEY6uwbxs/ULUQzC6pn+Yl1yFuZjAWvY/dlmXgqQ1I7tm9zCJz1mSggm7VtjPapSu HamUZrVytxC7hL6FsnWTsBJUEHm5YXWEi4bDD8dAOqKO+/JYD7NymgH2mUVYDa6ZzUaD6j0E6WCQ oQ+Gfx4LnIBMYWmHCMwYE3dCOGIGpspfQfaJi45cma7KSyXs1tbyKyhppz757bpApIC9J3swSHDH wlOqJCcXiq4zGjK2z/N5ZnK+8HVtwkmIl0OrAGl/MhjWNppWEpwc4/xoK5ZgIh9LVMHO5BGNKzFr b9FbvD8OyJxNwf2JpiXQntzpBEhHsMeg2EAlGMkOCkT5HiSN3V5V+Nlxd2joYAljohjYJKlcGLKg mkFgpuLMhNAlm14bX0UlLY8P7wQCvTszJ8nBnUOMsqYEjiS/VMLlEGRYz04694k9XxDcis5GVgGs lNn7iQrVqj412no7r/guICnVHum8a1onSNBSXYNr5zVd/4S7r8m8t+bcnZd60Js4n9t5GXHlg13s QxlHWFJ9xESnPRmkWoK59eIwTu+CXnCHQymIhXTnJfgmRifgKOi8c33OgN75No5+533tpzcpGr2d V0+KmxI+cYNehuMcy+nX0HjZT6ZjpFSRleNK3KNIT4zabwiBGb7P+mgaAVzfQz8mqc19ur75XG1+ EFXcOqaM0fQu0ZxzGATrkQj7xmpssDMQKyrtDZ2aByzhzpqKPsdkP2QdbCeBKSCojBy5LhAvHGYz Pc+0q8AvrvFwHS4YZm/FzEwlNdPYoEPK1OivsCS4rOI40jCsymQHHxYYHCTipMx+wcbILWdtxxrx BUe4jiF2zSUoiEdZmk7ZKqEKkio+ejw4/BrcaqturPjnn1wRHMqc5gcLrrdlAaotfB4s7uCItvHr Z68AOAYLs6cilJCRdoMR5AYM9wDHrhTWgUXppQpHWmPzEIKDvFxVaJYa2s7DaR7BUfVlzadmmOTP SKhGPV2c7uel6e3jRK8/b7EgXnkQzy5OaDgalKi5YtX/XLzu/zWsxjxQ3vzfRyWOvotHjnQ11fTR Tsj+LVQazWrQgySH8eusd9KvDwLYAMETtXkcrVg79ITgMvGTdeVei8sR1ge3afzsNSbsTQ5jy05h e+zl9eavwkQFpAajP48nUefKbAXqBAqoWQfzId0q5kpppip57l0p7uTU/H1a99n0sUKvCVTgGLIA oqiXCAsA5lWR2gnXiLWPs/xD58Wa9Yo3HIMQpAA4TnRJfALH4cSHefveW5t5zy29/t2f8fsSuO09 Cy5+EqK8VJTO2KXCQyo/66jPCzQAPY4VnegjEEMJA59j2o9xtu2o2AJZK0rhAVfWwB+/GBMZvHzC l/mtT2Q8vrQituZTc9IETo/l5hPGoHXY4jO572UFRVRbDpnOKuG4FFMDKWlbIP3MuVnra+muLwte AeLVRDKVV1jYHwbxUeMcNMFsKC3HhNkYFV9PyHB9ngF7KPK2+r+3j+v9Ni0JhmdVJAY5/ooHYK2K OkurPtQxUI5vt0e7d1+/5BAr7XhTELRxX/tqaWsY1rglL9gci5J5+qTpzgijw5V4PBazsucHdJ/H 2XkHLAxwH9qp5KArqKj2TIDT4ZhSF/XzLGZFwpINuFezvqhkT2zVykEEej6rQll5Z7e9d8B5Khx2 eoZfOo8GjOrfcL7A5RQlsv50rIrYPUDbRT583qBGDafrj38nCafHOwelNPBtpySuWvewt+ZAQjTs wiURys5oAcSY6b0csbOLEizripbwaW/x3UwIRPnEuS0+e8nj1bDn5MtpHZESnYtWXxCJSz6Gt+O6 4dyGATDOyLrpKZ0L2S2A5I51qUJiNO02fVEscwb4AWrvVuaz4FlUn2yKt5MpuwQ/tX0iKDCS9b3t d9zeoKKQxlNLVrKbr0+tsFVQF5NJc0f6qhm3c4TtyZ7rQEWu56uRemJdpW9qEwaDv/+fr7UI7kFL XxUDNqe3LTa7M+lLGf35MoCh9A1x83yVTHXSl4IvTvb5Yp30PQoVRM+32biV0dfSd9cXq/18IQEj fTchYYiHWPp8nWXfMCB9iaYRLT7fcNxiKqTvE4O7n++0K30hXftCcSre1XPj5GiWH1vJyApoQ/I0 WAOM2Zka5WMMoIEWdYGWr9p4tO4J/NSio9U++uq51V7NwjgXPmnRPOAUXRTyTCav+VYCLKvxK/j/ avaNfZsxLT/OgHVgBj7/lxiba2gfgPHQFUUlI68xq4fkUI8p+4A9jmZCmC5Phoug+5eqgtxbbWAI aG51M351AuTUGrJtbLfXOEqDpDqxDtvV2nlv0FfsQ0T9jak9zDRsNNMPfBE2D29knil+/q6fMf3l xpZBnbdfJVCuN9bTUPDWeMXHGF0c9nZNeXOtt8pkZYubJWd2E4NqZLjRWLVNVsxfEoBc+jCp+P7I OhbNYCDbmxzIj+zLFNKewi3dPIDRRVsNNrKSMSGAdAaGeAUembq1TRNkny1JBlCSyMHoLb/vV3oR wPR0Grr/Bd+t1wCmNcxfYniN/7RwmwQQzy186CCDSPjJLQP4ZofCL4xmF2MabQJjoEVD/T6NV+8y jJu3LOnKP3BRWIVDkjV40gn/BN1mkaQuxxdKpSljuVMgB0By/0PXqJ5ImrmcrbTNfyk0YfWqNlyG XccqceEcpBM4TqsN7JLroFXXyO5Aslh2TYDsvGGoPeuORIjB3Jv8Qkgh996EZI6DIXRRNu5g74Po myJ5BBnnFA+nRRUsCwnPqeFMlcWcDbICVwOW6DRqDZPD6WsloB0grOG0c/5M/zGcf/GNYhfXy9Rw Fn9W/JQx5q6EQ0p0Ynta95cBqGpRRhIbQGrh8AMWygd7eaxx1PAxedDcvlhQ36mA/ZGvKAeM0oJw bIGA9FxZHkyOdikG/JKN1WB8U9DgQkO2hYmA05Ly8NYDdYHrOTrGvo4/KaMpoWRJGSXrvGh5O8YZ sFIdAJ/IDx8MTxmpmmNBy0dL62Ba8QKE6ICAR7G1C905sx27tBR4+2fZGiQTlpRHPWG8qZe3xbrB YghaRcdD5466mJHUb7UQ7eBbqv64f/isJhmYBC4iHEiWCtuL1LNite1uXA/fbmaieg6KKaN+bU+I JR4X31dXy5iOnVH3YeHOpAydhDxoqE0TWrfHCK6wf7rIxsXkJcB/UHSnS5T3arWRu9g21plQjNMg LC41VMR3dE9PD0CIfTIqDCHzFwYW0Ecc4MLTNhWxZyPT2xl9C03WmVFmLNUz1xiiAiS05NT6cquy lCHKqhFyiFxNHxnbmIkm+A8TY2Eu8KHi7c8/MFe+33FL0lCxyTGVwE0ILJR/HTjcGXtMyU330Znh H8JRqWx7H90WokZ3g4/yDDRBo+/2yUaygr97g4weyRpTqcdSZYRopB58fwIjN2rFlliGeqn4CCeV qgwy1ccP2ITo9aQJBHEYPG+hVFQ30+TadqrUqPDrDYjDgQAvk88fIvnB7Bgh5sQgT8USz/LXJnjd aPaEl1sgcrYdsp3tQxSq30KzjQT+uKdgFJcnmBfn5A6+JPSVLWHj2bdGA8V2MRBlLP047swTE1eo kZ+x0WcJjhdkAMXSzKjHgKjBHABWe+OWeQ0hoNVkSDaiJTXLmkXu916veAPGL6KbotFh6/5SOPYB u+Txcwvsh3eNCqCHaZlbprE9bb9rsLdtjGtjVyOCNP9yO9wEYtC6Ve51RTLFL5X6a7gKh9xor5aF 09p46TZwdDnjacS3QmMhR5CZh5TDiEO3hCRrcfywggmFZ+aITL7na4fym/RLB/RwOckT3oPD6rFy EaYC+ajpe6TMdMsb79UCY4X9e/75SXRDpNJkasSekOdH887RKMVUT67BnBY+Km5ChE8i2GAB63DN gKtx9ozyX9k8Rm8RhCbaUzAXhwA/PSAyQXecDiS60CIClOJULT+1CuRx1qN+CMeKvrPlZAQRFlfQ m4lVG42UXxUKSEYkFg+cXQH6EwFZJIey1lHrTr8qSGbpx5w93lk1QNCHzbIWg6JzOA== szvoYKkhmJYIeQf3m7zLeqjU8L6tXHaP5R4FnkAhV9BBLaFOYFcba5fzIEayzLlXgeM8guM7mRZ9 g+0QiTlty4RKh11zIX6ijacIQdvZw+VGBXdUi3qLvOkwSSI3YWScEwdMbGY2o5IDdxSp5NbvxwRG ClIcMFOmGRNR32Y4BN3b1ymGo25WamZ2Q6J/hrCOqfiUaVG2ylxl03SOlSCXraw9VMSINGS0VF4c Mg3ABB7jA8b5UOVFdwQqxzDAd1QIQTT1DegNLk3DkZVE4wjsDibQUgRJylhrK8dRmBSmhdnKs0pC VqiwYWxdacNReKM/MZZRaeBMIBeihuJe7DKfayBepBRE4trvUHsI35XqLl5UNDzzJ3aH5jbiIFkn Wtg5qEws53A1wA19vezS5AxldzaXQw6V63qHbkadK3aDn5wVPiDW1IthsZn5NGKiYa6rk8sDUTN6 cL37uzp7Oe8BkRVEcj0bmopHZ3k0dlcdtlwxkRrf+gFEnc67z6pvE34OziUHws5f01RDXDjDV6k0 QFfweJATA5cnL5pMSHZvrnQhC4sWmoYMB1yU9lotCyRP6ShlPcm0gpYqmR+wlTqwBWayH5LAq3kb K4w2E4GeuhNRbScXinBk8rBHVQzDYMHqVYczSn9XysHMm4YXGdhYgwgcqjPM3D6GZQoshIO2uW7D bIwDtFUfPRDr8cQTi97qBjugDwY5f/So9CaxlEmTIj0QlGDSxsZagD1QWplvgmgbg5E2NkxZg7YA LFSPk2o1h0ehbFmay/OiHyiGbxFCodMzhbZqo0py+HqsI5OnIyDAHaBM8n9ArsqhyruUIVBx9VvX NsgdkcqLg1K9IL5rHNb6Id9DcQqZPe80NQOlVaml1eUWL7fpBPT5eZE8eHhsc/avPT9i3sdTS30i dAbnL2WCYhYN9RtAI0o957dm/fkQ/Etvf5tGAFFMFmAUZaJ1cvU9RcMCszzbgwgvJu68y+F5Bvrb IUnqmryv4XvNDDUUWqgermSJNalKUabHof9v4JSGlK1PCt+Fe3D2uDjPtRX9udft8hs5SPxypobq /Qjv/juYx79GX/4N95WZ7Xn9zs5+Q1DRAjShpO69dg6XvxDo62LLknzhCUZgZxsrzzgZBFlKa+q9 k8yA2MJpk4NK7mgjg89yDrW8SyEkfYR/EeoPq9OhfdiLGapfRLhdqI+au0duxCa4ZnVXDY1Nnb3F zTd70mEyk09ZJyRSBzSr4fmbLyeegaHHP56KBrQp2qjUBYnvg8pch93zB3zE/vSZAFoMAKQtXAqZ 8vySospzfJgcsYtEfDQp3QrdDmJ/RQDHxQ2eYibAPhi9h3rhtkvU/LmqJc+iRIqmlela7AbFXpfx xrQj630J1YI7Zr28AOUFI4DOfkDEeojwdp0ms9vDRj2tTEaNHe7spW5s3jr4cAmrXQQcyUVSd1q8 qLv0GAtNf4H3BwWkCgvFFuhja1vXx0Tq9Q7SlTZYtqU4q8fBekGdCftaqjbpFfVt2vDNoJwyTsrU LUECC6tYIYw02UscTRR4QWjeYG/scgC0EJnerM17n0WfFWQywLVYbNwmWjY6rXrOgKB4huW5fUnd 7RVDNczfpAz2OR5o1Y6NypNvxeOW7YhQWYrEZU5jkFIUEe/wxqq8v2jjpFam5EmAq3+ECibM1CWQ nGWlkk+oeOOD3DAwKDWobVP/doB6sb1LBf5isAXBCFnKdcKZ4gH6WKg8geyOhHQ32jFCesy3AZT6 OS4EQJvLnpPenSsP2dTtHEmSpD0UOR7aBIILh5oFtM8N4wNRZW0SYQecCnhtYtj/XwXzCq4VDIHM yuYZqdT8obP8Mrk9c7LLzkskGfxJjkgsn3Vwt2P397BBtf6HjzWcLr4EJspIJxLCiZ041UorZ211 o2Gs6PJTSQWof3GPKnyA1V1RwurMqblrze5/c6tV5FQmraMKwJbYbyziChsE233n5FeRMnYP0XAU grq3UYUbS/W450bgIKU9+Z791n1ICW5TgsnW91QTaJVggSqxQoFm0cVVWlhoSgwxNOzteHORi062 NuJvqVpmUcejJmNRHHAWtH2fwLThP5sHdNmn4dZuIKsyBzU+vOGVIoygzSJ30SoQWDE1BaeYleG0 Y0TTPInL8ECHIKL6edIjih4MANcsl9zutsIYpkVsxhl/TFhURuBASZPAPrtDiKwVKt+nWTKXMmOb BGGkOLQqwRukwN2rxRvReKd/XkaWQxsxJGqfY1YdwdWUWnNHRc4eYT7IxmpgCLDR0Kswa0/FI1Ik P4w7xepB7EAJAQr9WqOYMBesAYGD7whwpGGVhFH+k1Sz6Cg2AyTar5TuGg0BgxhPOcwplJigpy42 c/njQn3M3luq1fQbEUQelhJaVJ56Yh9AhxdihXAQiYkKqT1Vs1zpppr/BCcZqBn/P4V8VJYVfAbJ WhgBD4UTRInSEXQbjFcMrA3qiswZ+5lpqvl2+NCeF0EsSie2MN7uot+bfSFCPOaLmXRu4d0t/VSp wRnW5SP9ZETbYt8Ax4QqSJ5wlmn0oHVCXCeATGCN/jMtVQNgJNxZfrPOAj67UUj/XxUoSC3kOOOo IJl1a5IYNCz6q37cdW+Kj3ASFQlNZj+HBvcEScIxBakJ/o/Dg9Mw/PpfegeZ8TqMaCToBo5mtTYl dvLwh5kdo5FP1ugSHEtNjwRcI02TNGW2kKAhflODRsZzoY/0hHpreHFs4eFo4HQgNkGMAtow6TAJ Nql46MZeZXnFvolBJE0bDYLF1scYzUSgfBvciOwekafJl3TXpUTudH4GH3q//5k4RmfKhk9S1pgP U0SejXiGWSowpAr6Cd4sAa7q4+BZyqz7Nff+ASqfCjYtCicddTvvkWCJEEtQXjlZgCYEYu+MTthI tGRBmxB4MqHwaYU+4g2I6Ew7zlQ1XmWVXpo4MBTRRQ20JTxgiRhSRlpbR79AFjWzB3pfwDnOYUMS uGvHkF7Hxz6HccewxMX7kj0rw03fWg4mGSIey0V7IFYOFTQLI1uCkca9uz8grjQarpud6DHexBTx 4qmsS7/a88rxe1A1mCp2u/ECc+WUfkjdeAT7XEuhidpQK7YbSwFSv2RIIgkevwBBZZLvngQdbYRj Pkg6qUBo0NMAY3hWexxjHthyrY6P9BtR5yJAyGaFaHQSPJ1/qd5dscazcV7ZZ4h0V7nJpGnnRDii /qCECfxmYKWmIDXul5goMLL2VT7BcD3DEACBHpoKUbRjzTfd6q+Ohfd+RR1gdzo9TwT7Qeq2XowO 6N7zez6QAcERDQftE0XFa8BZCp4BcC40XR/BMz3X21jCE6JeOgaBtQKN0o4XpFRyQCa/ENh/2B33 ATt9eOQKG2VPvcwnDInVADhm2sxBK802hCnJajgwNKkBUkLzF9Q+oBPwvPyk0E+y4RpsbsoNDaCd NK9zUJopBfbl91KTzbyiN3x7+9mBZZFmGIbDDJCUkABGFgmeA05kJaR0hNFYjSl9R0smuAs5DMFb EPWOIHRqHQVgAAQE+G5k1tVBVVVC7kN8GABIZRN0XEGrdrZJII9b16J4eKD+FrhEHg5xENfTyeSd q0uJOlTZHk1lSZ0WTZc8Z/u+xR3dwMTnByt3MIQRec82D1sHgSfj8XPTMYPIjATJgtSZuYRIUTLL C7DdNjXyHTrNFjRKFxXR3dJYEdz+o7mN5Ctlxn7QlF0OQGbKrIV7UznIRLZVYp/8SP0RD2coMnya Cq83cIkcYjrCvGELrZJWELhYQSjIrnYUg+o8G+gQByNQPCp6sgao+Tak5iKJegNNRkbG/dVmiSc6 pS8QgwIrrGKgKSM+lW4WNe2FXhgyKhPOpJabNzpQwVLdXSSCLZ2GZ5bJM5QgZWVBOHFB+vI3S40A wOjU2pSMIqcuCm1iVWd1mlxfiiVLsKxf4wZJdXEFwUiaNRgYQlsVcEGEvBPopVuCUMjCbI3khlt+ Jv23l7j36sRf1FUAkoDzSm5YELLGuaV6ZQWeYcwwlIbQSRjRNGbOgx5IJ/vrNVkzDK2+4/E2zQ1v V+1htlXAje4R5iJX/WvScfmUxNXDiZFonrCk+ydEN4B/Irk3VF8B4Qt5kxFpQj3CMgmVgH+cdXLK Aq6nWKc6Qo6R9Myz5vCZWEEWqTfC3p58BDA4jB0rASQeg+JEceP6BhZxshBy5FYY2xfzMjSdDM+y 4EQHhWXGLf2XYScFfyWA/Ux+4Pf8ogQKwqxMTLeKn7o8EmwFBRIYyrAQYaPK60I19rRIeuk06r3k D2Kf6QsFNcVVJtr3I1Xo2H5kplfmiYsdE9Km3MrhSzVs3UtspTgkxiYEj3aaxx7Scj3X/zora+hd wJdoDtdb9VAEpM0kOfbF3Qf5QaSPah2fRDtpTQUkxmCoN7jBBGQMqFcdKmVEFeQvaZ/VdP10a2Un AbdXYzGv7w0zOuPQFfJ/uFSTbOGXaLORGIxO6utfVQCybkqwIP+OijItU2sI5YRFoEAczx201wKM u801N7x6q6+JJwQsxj7ED7xGRhLIZMur12GqBVLWzkinGPfwtvq01JR6EQECgf8roJsRAflnYAhj AMR8u/0fjqJER3QYlAehGdAvPqiQMhj6O3Jk3lxWE2hy7Kbe50I2NOm3ExCZ0OQUGQCJc+kFuJaP iCAGYsiavMv/U5cVBJoVOJKnlz2F2QHQYtHPYrqwre+RhVVDrCgIxrFPKejl8T/Xi9800SlXTj1M N57c1UNeNLZHQk4zL07tfxDxX15BYGzmGDLocvLiyv5xj474eOOnx6yP8QFQ1LHD4wCcEQ4I8iOz raFARiknx+YaE5iQ/+pv8OnFOm33balM3oGs9h9/h9cPa9x/2hY+U/tIlbIM8Ytge4G3upVUG1bP uxh7jmEBTne5Tw/A7ZZIEfCDnQbgIWEeTqzVBmEhU2qpY+J0wMmes0eThtoLq5ddcCMlSg3IiVG7 x4mgo5Sq96Ur0S/YlCywQHKk+++5Gr0tPRV+MZY/xKZ4lRxt0UlKmFXMcy+QyzFnq+9V4y5Z6UW4 EJ+Hp4uJ6IPnzp4U/c+9+DBnLCZhrtg7ORDeR7pBlCehGF3AV7co1TP+x151a7GYHBGqUpoQ4RCh +UByrJCviqhim4dphOGLGxph6M0TUERvZudP+EBQFGilFv9ciDwHo/xrIopFMOFvO9dpEx+l4TwC RemClMT8/4jEu15MHLf4iJIy9u/i8VE4m14DqHpuUfYJjnfp4Ipn6ETqCQRinQBfYuPnkuWfWMVU 4ERdCq45ZK92E8VZlSoDmc2VkDrsULwq6vUfKfaVw+/p1fs7czc49t1AOOmr/4yNv57Qeoe98P00 DnuhQQh6BQ==  Well-structured Datasets
KLUv/QBYnSIDSixroCuQAICYBwDwu68s+RT+tlMVc1Hfc8ilLIfZC5YkJZWmMpmFRQAAACCaRQAE xwlcCl4K6rqpZ8putXXAd13ShjUYkHpu7rn9FIVt6rnFVDTA6W7qlwnY3G37snf77bl998tGjt6e L/V8RZtlz3a0LyEa2o4s5aw9PbEfyqi+CPhoqfUTXvfUjDqcHzvRdAWlKOxVOSsNBrQ1x6JR9ixj Kvqir4wqYMV82trKXKu6elYaDEhrjmVbcLwu2tlmKifrnLPeWuvN996dPdsXc/XXGn4LA9+VdTHX od8c7DnEOqvngFLPVFRnl96ba8313lvnrLXPvGsN4swdm2fOeeYhF8Gwh1jzzbWr/hfeO+S7g17j zLnOuefd29T1pifWLor5ifdMRfHrpjMV3R/WflD6A0BB25a37D3Z2HdXMRUNsHp+isoS2FN1WzXR T1n0TWueH+AUcSwn637aeWCWRGr7Dda3ZoHFQNpklkQjjFkSvX6LljFLoo26fgsyS6IA/sgsiVxr 51VXjVkSrS41Y5ZEKtp5qef2qh99na3ZWmEqp7UWpKlWz7TFojMXt1YG3FoZYurZ/ti5frf9AX6L WytDeuo0XV24tTK4UMxm2V4VFfg/vbhWzHdrMNiKWyvDAJqr9pK9a3apNdh/VRTTXKp6uu2rpbl0 y2Ia3hIQHDVYZjjbxQy5DjaA/6IyAWzNxWwA7X+dMhe7LA8Qa1f8avGrda1sm7rOtIXb9FU/2q4A aFcZi6Yw/GrVGOr+l2wV8NN0daGp/i6IZ7QYblNXa2Wora29nrQXbbknbq0MLnbFbAAZt2z7A6At ZhvQ2l5fRWEf05LhlmXDHztpKG5Zduvc8vZsve0PoK4uzAbQxjAbwIm+6onZAFqWbf+rom36Xyvt xbI4fd0XTl+XZdPXbU8VbWFXyzAbQIABr4vCMHum7Q+wpq1T/finp37Rt7UyOAa4UlZ1uVz8al0p +uJX62rbl11bF+ynGAZbX/+nLQFfRVPYf+EZLbbxClPRHztZPKPFXPe3LG11nSxtdekUu2x+v5v+ AD/FLstfdXWtsJZNX6+Vlr7wq8Lcr75nCsMu26q5+FVhZ+yr2GW/DxRdti8cfT6bCJRxTzS1bOir WjaOZQNzqNxYNC03jmXbGnVXFd1WdRs5lq1BsG9jyH3fusZaHEMM53XPzrsefNvrv9rV9UPfJhBT Ld91avrropiYigr4aEk8X1F6ukR606hKemG/I3a9wQ37HXEUPex3YL/zXRjsU1vLNP2lT9NfcnUF ANqumz060fTc0Fc9wQD+O1vb192+iqZvbX1FaVrTcCwz2ftCE2Qx9G8CWC/s2pban0wBrBcBHy2t zJJoyw52BW0/dtZi6tl5a+xb+8jc79lGjkVvr2bbUhuthr6+Z8HxDdz3u67lp63zbVc2gMz3ulCM YxP4AdD3TH/OXuL1DkGR71H0Y6iuri/6bwCZNP1lqLm4iWHWOePNu+i2qCaA/1I57bqmmvd8RaiL lth1NIa09X3XS+9iTEVlLqqepRf2O3vU4ua7GI5Y6zB8VbRl2x9gZdUVjf12C+CnLG11bSyaulzq mZ6tAJJ2az9sy5pjySKOJUVb5xvAH20/QPvd34Lc7YW2sW2AS/3tybrq2b7byLG0dCy2vbV15lrV 2SX/1gzBcPN221u7pqvr3EaORdx9+xV9z7RGQ92t/ezJbiPH8tPW9t8zXV1027TmWACAtv91z9C2 vjXLxrE4NgEXTc82XV0YZV/hu7Lu62RB7p60HPLce/BFXSf7eWUxNLR6oa2Z/eu/rp9+kctxbOm6 Xr5Nb62u6Iu6Kyi0jtIfCllAjk0f/NfqQlXStz309mrPtfW2lll7egacKeuiGMe26g6IV0VXUHr+ 0LfxENQa7GPWHYtgFrfRZ9Fy/tbCrm2ZX4rxfM/X+X6aAJh2oamrBcDc/X7R+0Xne2J+ytJOd0Jb X7fmWrkqI8AkwOSnrRNtzwD64P2i9gyg0Vbk9WeuNf3qqtJO1VVTWgC19AwQU9H2FX3bQ8BtzwAr V2U4Pjvg/a9VfVXOt231t68UlbnOtrVEtof731oLbd/3lPzXqqa0ABybwH+tBx2PaUB7qiv6utDJ 9q26A+J8T8z4UjOrvvt+XbQzXkAHhAt0QBwQADC1QP99f3qCRoEN9jHfdkAIfAfEy7TpTR8QIdOW Ea8tpxY2z5b1JmDTG8OWt4ItHxADTFs+ICymLW8a5NrnUYe+6zzivI2gH0W/OwiOPXexd9DrcPdR jyGI8+bBsY89BLve4dhDnA+I0JYPiNOkD4jPln/K0lDRd0BEtk87D77tkXrT2gn7mAXHATHZVAGr avAdEO5PB7yit7WMOWe95bz1ph0HxMNxQLzUzErE2+OTuWrraPse7X+1n639sVM9PZtE8lIzK0/7 rztA9FMX+rYniOai6dqiDRD9AGjHfak/dYne1vK2Ftl7gtSPaHt89pSJtpdaW1na+l+0Jtra/1JR mOw9Qem6jtJ1HW0yt9ZeNhcqY882hqbpWbottCNzvacAUbu+6Cuzqe1/3/N1fdZtv+n96pmCXhU9 QdsPgHa29lTPFMSu6Q+gZmjtCvsYx/bYfnummgeLnvgDAH3EVNR1tqPNsT1eHwCo44BYYSqHra2t qaKxWgpaiQcHRExFXxVtQep6sFp5tvZ+UWxN1xakorHvvuqn0dbypWa67oAQeXDOnnK1tfrf90w1 q3F3LXoNhuO4x7xHrbOIxW2HL7Q1V2Hfm+57oqIxtP382AnqugMiFPDRkvrZj/ah3kJQ1Jv24hbm rrc+4ryJItZc3EScM5eU1pH62c9qdNs/4OzQagfiW0tX94feH2vPkT5Tjd4m6X+tnnGbuC+qktqf 1kI59y56W8vKf3U92CYCPhrgjx0Mte7j9nzj7P22/dbd81HUO2MQBDeuPd+i6HPYwRBrULKJPRR9 B7MWwxH7rSUpOvIY9KDfm8fe7/+eKUv7oxXnWNxZe9LYtX2k1BVFYz+04Mjb5GKGtokbU9H3/aIf O2mcVbhNfux0SSsOhnybtL9Fqx28UrR2WW3NsejtPWntqvkpqll5jqU7IGauM71sAtY0/aftfNUf Oz2beg4ot4nbrulauu53rS3oVT+t5loxXXdA9HBzUeQ+j6LHY8i3Pfo89nHc3XsM6r71nbfnnXst iljMett61KMPxT6KHbs/hG5EvoW6b2LWG996mwSwXmIq+lJr66XrDgguclBvkw8A1HXPAOrpAW28 T/yWd95fqD9xm/z3xKgr+kBPrPfr+gytz/a2J020tevr+iXHNvnpi4667oB4OLaHitJeFsc2aVdN 1x0QGmvc9zZRV9Rtf2klcixdd0Bk3Pf2CDna9T3b162lKWfbJu36nr8tu+6A2DLmkt9aXxaJCMR1 AeZIjh4P/GBtsiQCebA2uTx/poFoIBrIFJlW58+N1fmzAes7EoUbsAYPg64Rkii8Q5gY8AJNeQlQ vQPLHAaZm9pcxmEwRzLjoKw9w6luanNwy01tD9mYr22+THe9eB4k4xDALEAkAhaIhkAEMB2DtTEL mgZoYxYcNQ3NYUFZIPoi8x9TRqXSaqoH7aVQPsYver4ZZiRJVTgFyJEkt210NJgbkIWO3yixImZ3 T6pNCy0U4EEeNXkTsGrt6bFAWzSQG5GLLgcv16pAMxSgZtAkXIVTX0hZkgIhtgc8CWbVWkZiYJzs RN+IbafdlrEYOxwnhDARrgxhIlx3QBRgl8dVGGQRbsQgi3CnsUDClTPS4zJjgYRTcYuEy6hKEW6F oEq4mKt6PLlPJrwyXULutkzSbbktXJac1OgOiISEhISExU+cukxoWELDckLDGlAm2UmcumxEGhqw SEMj0tCAZfZUKpVMJXtiTyYZivS19G1v5n5v5v68lkgmkolkKjUzVEbkeIQdicI5hzChGLAGvCNR OOcQJhQDB8LEgDVQIEwoXEei8Bc0oRT4hnHBuwOigFYwLnhDTxbcQFMKaInEZMELvtm44C/mxTgo De/lvClFhrM5DJJNbLOJbZfcbBpMl61NIPTTJhDlJT3yvahMl91AvgqOCcx8mYpxts2Xo0UwzsiK iaCxxVnXnA27RWpOjeaEYFAZjUFl2Mgpo2J4GFRGJ06ojJaceEbVclCZlaGKzNUT2WtCZIFojMsA labkRHoYAgtEg0iYvSJQtZnOJYQtwMKNdz8cdj5cwh68tTJddvnhEtYx0BTvZDqZThFcwrLbclsm 2a5M7JjAcrsymbzFjKCxO4WMoLFLrkXQ2OWGt0jPZPIi7cpkkiQ0oBpQDaiEVuKsmRKnLr+EhjWg GlClEgqV0aW7XrzdgDU0YLk7IHJDA5bZk1kyeQ8WS0LwED7dAbGW1tJaInEgC0SXtY4FoiUzdy2t JZP0VJEJ+Qw/58/w82dwfIafaSCTBjJFppeAtcnlhLXJZUNnbXLprc6fOQ1kkh4CDWSS5ps4wY5E 4RAmBqxBR6JwA9YxIVF4A2FiwJojqfBIFG7AfrUCTSkVHBNYLqCZI4kySa+gYawVaEoBzdEnC84L aAULx4QX0CDsuOBugeZ0mZvaL8ZBMTU0YHktmaTHkbmp7RmVKJzD8GA43lSXcVA4h+GRaHBTHIY3 5qZ2udB45RbjoHjbU7RM0tuYb+JcmS57Zbrs7oA4IFYh0ur8uTsgGN1ruiwo7ybGUd7ay3TZO3M2 XnkTi/Ctc4mgsS+hEx8QpW40X6GP2R0QlU/Q2BCzpiJo7FecbQ3DBaLNl0ngrbLvEjo325M4H7z1 kd6fK5ousUqckYkC/Wq7pXHXi2cmzoJR4bLZz0PguEROCQ3LGZU5kiHMl30M9iTBoDIMAzaCMZ2b zHiwPAgTiuTEDS611M6oHBEPQWM3aivOOCO9DAODfm4jJ9JD8HgVEeOVgZCozAIuYd0B0a5M0usO CCxguqmMXhNm7s+Q7oAofYafaSAzoUWAfolGlyE7BgILjjGdBhkHxcN8FjQpoiOaFNEKV7N6Il2G 3JvG4tSYBXMkId0BocB82ddhvuy77IaKBaIvoRNhwUcvB0t2nS/IFRHLAJEeAqS22uSOwdpkEMkc yQxnkh7GXS8H7nrxugPi4S0QHYJISg9hwd2OUEIkZSQTIbmof5mTKY1dmsyRbPQTwZctEwgr55J/ BJBaGwERNPaCK0gNKZMpGRyIodODfjoFBYIJLszVqbMwB71TgPjUJFLpAsXxkHneMsKGq2AwXtuD RHch6g9uIDVjuMVpkBQUJmc1ie6AQJ1Sj1C4UIAeSNZkPWHV2gFYh2PTo7dtzUTw5YYqer7TQjkh N6L74QZXkKBTSeFKQASNnWhDlAPRzSQsEP1oEaCfoqFgbTImQTb2S4MyacrG+1VApkfB1BicRByJ PApGVPAVmO6ASCj4LqWeYUYEG9UTinS3I7CakACmswc8GiZvzm3NSM+Ca1e+9Bjcag== ZRkTgUnDR6+cPNC9jxdNgmECfUpKXZOkBaK/KqYydYfq45ilvAWvgJFtEhwocAFaJNTKWKkB1RCS SuypYEfe9rOGRpeMTJTHsSRimNU+eNE9OZZyHhfrtRqFSubCptLJqijyGsjklgEivXQlID0Jx8Vh nHFzNJDpZdq2OyC4AsYrQwYwJgYUL4nZ9ZabU9/d6ZAoPDQqGCU2osRAUxIkX03DeOVT6PgNrmPV WqwhZTIZ4dQLJm9qt1aL3G26A8KjvKSX2YOMW2G8csiDfrpvdCBGMu868UCPjYNs7JYWrhq6AwIy zkqqrrUNE8YruwbEhFfZH9GbgTRty3EDH0R1SjhMnCXgySBswvt0i0qVuwOCgipopJOZJ9FKOSAu juFzDhLdAaEiiChkVCHgsCQwSpIEygHnKHUHRGPskA1VKXNk38EfoW8u5e6ACBfMjuitPUScUe4L 3aCbne6ACLlH1K4YGyg0DESf9JNVLVXGI84wH0br5E659LBhtklA+MjpZFKha2aojA6JZg3eITnx ldlw2ZDxyqLSN+tywoGCAsHM/9TN//EwCtBVkxEwB70baZpEd0CABgw0eeHUQ4Vag0IBkpNUwOvQ Fg3ko0QQ3e6ACH2Zwk1xAygBB19sQiyKSi80IXhWRqos1a7YFc17s9EA5U6q7Q6ItTNe+aHTBX5y mOKjQ9ZQbQJrRCrs0d6Yo1WBZgxwpugApsmqUyd4tOpCAbof7g6IisFFk7tKk/B8XAKe6dG7A6Kk hgjk5gKqFG4nZUmKx+UgwftUbcsV4D6GDW4usVSkIzN1lDZFt/yr7oBwiPqXPyCBVKvgCrSt24Ep BBK4KbofZnAm6dXEDsdizEW1n0fJeVUzXnlxGh17pGpElxV50mvw7ocpBaxL6NxkduDBkoxMywLR DIvNSKYmizkxXplW4EnPIhGxxhXzSU00+f0qopJGAVPxvN6EoCpj8nGBG4un5mFdahylbbsDoiRr RPRnw7H251mbXIZABXmnTqRH+p8vq6EFol0EFgLN6KRRwGQFVJspdYVVgxMGNiLpjgaVggM2YmkR kG3bHRDlX23yK/OEcNWwJAMKNFABFLl44STrQ+kzjCc9j7vdjvAoOe84EXx5e7KEw5g8EU40qXkc hrEenAyVRbhR4eDBDcxIj+sOiFDjk3AEG/7gZGCIwNvkKcMwJ0FIsZmZIwxzeUcULoDAJwgDfXu8 L/NXRvEkHu/LX6tE8UKWJ73utbo+xoscTimyfNtkOyDeAP5Ia46lfDUYkGMTGH2XtNHSTdFTbdFq stF/z/ar3++zhjDgbM2foqMBZ2uCfq8tS0cN1BWdtaen/QngrF0FvK2FtrYaEH3P0KuumpHOMRXV 79laW5dF11KXygG55dYbfd2PQWHoq/4X56Wu5QDNoq3L/RisCljVmVrbXBS2bt+tbempYlTO5p6b zFVzNzRl2XN7a+uAM91OdPuuM2W39d1e/6tbbR3QrlsE3VT0jP0tpgv2LgOUQL2ZaQU9GqLeHRBg ypOe98yCHLorBr90HpbGk5CUQgHyAdGUXt8ZXtdLn++XHRVt6u6AyKrXZXoZGPRB2qxr8LD2inOq 3eKv2ZdbqllemJlmX5aEZv3Fz9aX180Zya1q6YXWlx+cTktnU+vLH6n1aZ39PH1ZsUofe4+06fTl Fwcz+o2KxhRHBLHgUaqJU4+szslTsDZZMaAgPW/kSY/PRJ6PL4A+CAn05UWD6fuAvtx+EqcWO9vt YosA/S4fldEQDejLqwroyzWOROE6ZH65xuCm9gNlumxIhIE5pipSmioCU6U/lpjAgn8cUlKSKQIy 9QjJL3P8OyHBJI6J5zU0Hp/BsTp//rAjJ2ZfJmOxiGZFK2i10nhf78CyZOPJj8kTMb1WEa5DFhwj +bK1hldtubNW1vBbCgUV22qJZKUGh3K3QqGQqJ24Vj29s1N3QLiyU/tPB6TUhGponUyrE+ntE+rk Onk2mXZKtCAVt4JmIBlobSgp3gLyFVog1QrEotYTSKWWQN0BwaUcV9s12ftPKRPKhFKcVBFqmxgL bue4Wq2ycLq0mW/lTBss6nSBHwycno9LASG2VY/etm9I9VIoHy3eLkAS/6Nre/YJuQSTGBI4tTF4 XLZiDNEEBjxu1Kxaa/bEqVGqx5MsbqCDyBgK2JFz63i/3CCK5A+TqIz2NhHSk5CojN4HEdLbMDY1 hM9AwVZgcAp3k1wZjqA4uTsgRJSBtm0/n/iZ4SPYnsfalCDWJrO7OyC6A6L1EOAwIBKB3rbcSqNi II0sKEiIAk7K9iF5LHBo6Wg0nF8OO6xa2x0QDGdq0UDS2UpjCblFYhoLJFzbcLzdAZHBlwIzwayM iSZjkt9YDCjvV+mILgkZka55c9fEzHigOGBdLgPgxtIdEBUQ3FhGDyg1CWOUti2/zHTZJURSdgfE L3UHREslgJUtK4QxKxlKoAJZuTZmUSKRG9CE0rbdASH7gKwMN3pXGg6BQanyS1lVinCTg4EHp5mR HidikEU4jF0GM9LjOo1PwnXYhgg3oGhADjQ7wl2wywO/htPxsqkKwjHe3R0Q3QHReHd3QFy6A6JV u5WLdWZamJJPFCwDhkGIrJ3sO4UapQrra1ArswzrzGC41sIVCgSYRooLuQgwzKJjRpbOQOxjUWwi K82p3ayVBlOjVGkZGrSsPE4EX/YIQKWZ6csNFhfhIm37ILlFwok0O8ItZqS3ILEN7iMRJZxAAuEA uzwuxSCLcA2HgscVvFYRTtNTj6s4FDzuoPFJuB3CRLoDYsHGIBzChNK2GLV75VSUqJLGu7sDYgCG UpUjywpT8gmqITOpLBYmhNLYpbbjS4SM1QQ2ioJU+QotRg3pFaNGtA9Yl8XbfpUP6KxhFqpW6j+t VJsRYEewSoLsrGEyqTsgGkqe9NgR1R0Q3QHRRaiMplk2HTfeDGRFIhuwhjJQSThqIksBuMDBOBgE RhaW9xhNqgL6XFSMm3N3QIiLR84Sb4Fo1SPZHzcGYZAClNCsQKCiU+9KkzCAMWYncPTpsnebUBpZ ZAqol3EV+HOI+rfSfLmBY0aWGYFpYlCYhYEAx6iRXmLscHzg7rZ9Q/3LKOaiU4zGRWkcjOWzNFQ0 CtpkEByO2QX9mUkl1JkowO6AKFNrJwNDBJ4s8VLI4MZ5ZjqhTUMo42oiy6wdv0B3QLiNEGNQamN2 KUtW4a00tAJPep6BScpY96vkBb+xoEyl1CTVjoKAaqJqMxGXmBm7A6JM8LAuByxwYzmFlJHmUVkj lgLvUTCaAwSXpZLZiOXgdEnI7Iwv5buSdKrW7oAbfeBJj2LQ8g0hgsbOLTe1JRrzy2sFldFhZ7vd w/pQulcxcaJj6suj5PzjQMZZSLRGTaSXdDYueF4HCjAfQSyiJQae9CReJ6IXXqqMdihYkAmJT6bL xpjOzPGfxj8MTNPHHElc+i9LNhEC/2VvQYLZX2Tmfsfq/PnMJFB49haIlsjc1Ib8z6d6HArWJjO+ VtEA4TYmT4R7cYuEo4iYBfdhGyJcQeOTcJQBEbPgMKXGJ+H6wcCDY7y7bd3OgdhwfnlsmLkyjA5l cAeCSXo+5UlPkU0Glm6iDFRGbgfDpBuaApjxTpfNY69XgMpobLFANFawNvlbeAc6m4FgMhl6ZkBD aqixCWPg/DASBZD0RJYnvY2GROEtr+BJT/TsjKbHZhSSwmW39jkjKBenw4LK6IZogWhtJk6NSbMv px1rk32s9eWXxhmopfbp5WDJDVe4bIiIoLElpcSpIxhURkcUrE3GodaXaZjxymek02KNPOm1XEeg gppcDxVk4bLHznZ7gmoZWViDUFayBBgkSzkhIIGZ9IVOXy4XGi9RIaaX7oD4aEBZCXuovgD+nAR0 CdEe5/TlB1489gLzZR9WRxRuAn3ZfbmprVtuaucQ6MsRjzugL9ckHFDEWyDaK0Hje24yRMHa5E0y v/zSxgX3vAWi88f8vo75ZY2p8irmQ8Ha5MfEzJ2KqpbaWEOSHUpjRyoDE1VGQyYTh+OVU45Ofll/ J1pe2BKFoxISDCwbUynjfRuPMS4jG096kYSGQTae9CAz9+e0piE9R2PjPwVrk12UJyUK1iZHVqbL XvgTQWMbLDxWGhRtcWoOZ+PQ1LoIxlMlJBhY3M5Ks4iV9+exw/GIXR6HQlAlHJmiD07F+CQciFsk nMCM9LiCxClxcKYET4TLmBhkEa6mSY0dloBUCKwot/0YMpmcGEevBNFtQavCzJqEkSaTlKzJle4S 8LoDAsHhYWVGCMKaSAYGvNOjt63bQeipx40p+mjoJE6dQltOwtEkXI2HymgGRieUZFB/05B58A8g kA2QZuRJXAWjhDgRsRoHq74Zmq9VF+RIoaQA/cbp6A6IcHcXkodrgCRojUEurMJdeCe1lsNY3RZM Wdy2ITlo24dqgJW7EISVVQlnlU34TWWD2SeVMS1KQl4UsKXcoDulLFMbpfxqMZAoK1H2DQFRxi7E k10KC528cAk7OVSLmDljcNHkSmbUZM4eZHJDZkDyKi0B6V0mqYDnEU02hyBaIZwmTxpcD9WOc5xS JPKyCdq2/Csu4ZKQ2awgTz48acfSoDL6smDKj8qq7Ere2A6GAWvAFRS8GAeFs1+Mg7I93vtNU2F2 6mIXUF7SM7cpzrb58jSnJpNx14unRk6kD2YBIiCAWUg0QKTHAJHexiwwQCSNASodEcYrd7NVreUI Pomv+LxqEokmRTSDo0m4EW6ABCpQnAJUFMTcdpLPU2+VvlkX2qQ0Occ0CffUuwOChSRUIDJPClUQ UtwAqgY2KDYiP7WmmT1nKjyeaiXA1YUC/IAXiUqTQD36LLRoOWTe/TC7Lhr5A4mugxuYrQThzPRl vzKQcN0BAXqtIhxoGUG40WsV4USqUoRLCGEinBYwgHDb7aAy+uK2PlwqysTMdNknkzmSEbclOZku 22RyTNqV2a64YwLLCwSN3a7aVXdAcElCw7IkoRtQJplgSjAlhBglKqPLLGCB6IqpnLl/5v48c9fS xALRZWMzXrnsRqbHyBQHhOaT6bofO1kBq8zdfru+7m9j24+d7H/P7Qc43dgB0f4UPdtR54BIMG0P xwYeEC8TaRRFUfcx7D2DoZjH0Yc8ZxMP++583DjvLYYg6L3voBjmrffIxe6zH7HXYR+1OIYZzNjv vYVbh3obx9CPGgS9mEPue+59BMM85tD3sOvuR1BrPG6+8bH7cXtR3FncvmMw3Xb2uou9g1nsevM+ 5Hjcexv97qI4ihr0YR63OGJw720UvR4717xn7cERxHzvbRx9DkMNhpqPohb17jrvDYrdjyIW9d62 16PuYAj2MfRgz53rMAR3GIY55L3n3bHnWoei56APfe4gqDHfvP3pSz03tLM9QZPJD4B2BLbmm3sQ BL3mIsh17ppvkPf0pLXrgUn0IRiGW9Tixm/Qay/u3UUsiuKYs8YcFTBzrWnp1tDXGQ== ar/aruUI8u1BH4o+hxjkO08mnx0wqq2h37K0/1V/yT0Ht/Zh5zgUtXi2r7OGkJ7oi6qcyeR1/dBk gp6u9IBwgWEWd84gqEURb7/Hrj3fIedjKOIxdW3gzn0cN8jDjH3mG+c87DrMXIcZ78x13nzc3Ych yLE49rx3yEe8t+cjGPoQBDnfeNR766Pem/tRHMGOR7711l5rUe8ddrxT7vcIjjmkbWLOXQx755pv DOq9hTprkXcx9KHGYN9aZ5y3ncfud8g172Io4rz1nnUWwa0712DOOOw97KEfO++hz1g8IFjLpg8I 2AFRiqLuG3M/jl0UMah7GHrNQQyOIdh5mD3YsS9z12HuHu/tOe5i3zkcfcdc51HkGm+RHxAu70Ee 4izyzruI896h5hyPIRf9BjvWe3Mv5ozFkB8QHe7x3lyLWeMw5AdECYp49FvvnDHY+ThuENxY87GH m4u4d8435uAeRREMPe49a7/FUMyej51j3/nmIMhBj0Fw964x2LkeOQ/FEIcg7yEH8djFDIYZxCG4 wzBrsexZ697xOIZZ3CPHY+Y5jxn3cYeahyHmYO/eg1nsGNTcZ3Hs/IBwjaHY8eZ846DmGxw153zr YehH3UO+e4jFzkVw5CMeM9973B0EcRf3AeHi4N6+jyAOPe8hD0cxxGDm4dh3H3UX++g9uEEwa1Fr UYcc+643OHow3Bgc9QHhAn2IM9fj5mPeG4/jziMX+djx9tz7LYoY5PyAcIlix6Houcah56HOOI96 DEc+eix60W8R63HsI85j6PEee7jDPYIh5uDowc455iMfu/Z79BgEuc+8j3iPPNTd4xHkB4RL3D7s WI965GHGO+Rh9x2LovbhuHEY8lAEQ7CHWIvag+DOe8x4DPkB4dKj55pvj8FQb1zsvYcZgyHf+vYd BMew5yzizvXGdx/3iLXnIOhFkIs964zDzA8IVxhmPo4ej6A+IFxbb75x71v0YfZcBEUsalCL4yiG YNYbd1EfEC6wj3kEu4hFv7fN/e5b4765uHPIuc6Yc67DPGovZpzFMMyh5+Kou4jFnUGRZz1i3QG1 2HcGO8g13iM/IMoRBEcddr5FrMO9QT9yDeKw5543mD2IuQiO3nePQb4559h3QDCDmY85a9rWtx+5 B8O9RxF3cG9c9zEMewbHrDGo+94jz+KYfQ83KG6ct47zJuqRi1rsWeQjx3nbIe+i3jtzMAw9zhvv fQy112Hm3I8e5y0cwRyKXNweHDuIXcvm9wFROyC+ANOWD4hVd0AIkN7WssqrbbJhOKSOx/S9rSVj 2fIBoXY8m7qiHMcB0epsect+y5v3exO33sZQt3/A2XmpmVVHBsDiVxqQfQc6CRVJK9NAjUIWVyLF aFKj8mOhlXjqxDD4ggCDkzaDfylOrePdAVFyCaxt0BUYXgKsrWB6sEK11e6kq73uFulhBU96uKKw 2j7Bk56P7cxenY/MVi3UNinF+I8LszkKmJ3gSQ8TbDA7kjB71R6btRc4kcJjO16p0HLQSSTYCpC8 AVfx6fyNugMCjybgY3savaDg+mxcGcGT3i5Bl0bwpLdxkB6JRLMtD2HTGKA8YU19gFXmQaJjZhhB LKINNCnS6kpHRQXL303tRsU3uv9yQ9FIkCQN55cjr81qS2amA0L9H0cCquIVY0Gq7JhnDWNaeRRM d3ESsTsgJNqXoEt3BwQmkLj0hFWThAtXRLOeF2tpSKdqDZDw2zf6I9sdomy07oCbrJFs9FdZbPCE NXWPRbDKc5BMneiYuuFiNvB2AaIALxsz4WrOQqJzyYaqiPY6XRnR7xjRao5oWSPSHRC5ooJ9ExIM 9w4sS3AJizgmsO6A8BIaliENDdhj5v6sJ90BgVG7l0DSQdTZhPJ1FjfQ8QorzjRrkx8Pb4FgfUIS KpCaxuCgROEGnvpBv/bkSa+hxIrISQT9MiQS/RwnAm2aNPq7tG35XYtLx/HT6NgeCWQ1IR3kbsfL GYguibtdr8osDvLHrCx6zDzwpPeJIQx00UEytRYZr/yyzFhlnrXc1JaUZMoz8KTnfbJGRJcMVEUF W5iQYAMh6JcipKfQO7AsqTQ4JrDcRSyBBeLQ/sttyNpkhcPAJD0c8QoSp36sNLQCCoEfve6AKPBc EjIUdqD70cNA3q9SargkZPpeGZNGSFFYeKw0rIGBBQcnrZ897RVLnoxG8xA9THkqsTQIjzGS6SlP ej3mYfCU1ylPeo6EE+nllCe9/HkwOE55krEoZYGK6jFGMt0B0YnSnUEFz7CYYVibK6g2aytkBQVP alwrBU96IE0gsztP8KS3JugET3qPVIv0csKX4EnvKxEwO6E7IFwhBbP7iKtOeuRJL4NeChl0URNZ YqJCyvwL0OsvBB2Exw51A5rNY19KEccxwHRgLpAFEsPpJSRQoTz2yJOepEseu11tOAnBpbsDAsGT nsihuPSH4ElPE0hc+uKJkJNw4dIInvSwF2sheNLjIcpG6wNPelwj2ehcWWw0Pnj1mBk5aDlIJuTA kx6k4WLqWMl+P1RJXF7HMzjfMaIfBrJG3nyadsF02SwncepG6B26gf278qTj/dpTCiI91kr1qE4E X26EM087WhzYHRC8kpABzRSjRuDlfpWCgferJF7lAWgKmakyU3spMKavUcDUyg4k/28160slCRwQ ke3bxN7FDeRjeECQAXBVIfNbZqyyOyA2pZD0vgNPet+ENbXkQOUdQAhMSkEu2YgBh3RUSLYrI9qA peaIdhgw8kYBq0yNG8YFr2w86eWS6bJRJMNio72Jf3QvOQWYXqgU9JXJVFiSTilEMzMjQAAA0xIA IBgkHBLJJbPhPGsHFIADPzowWEJOLjogk4nDoTgwDIfESArjMBJjKAoyhpiCzgQElDOA5rCv+D9j XtJJfaFc8/OPVtabJ3cuWsp1v2Ff9wuA5QpsAGaqS/cA8WP+UeVw4M5VI1stoZRpRuhRe0n+ilpm iN+Epb8Qx7gpJ+q1NH3lgD5ixSD7S0nrX4dE51PgPBOYyW6LVt7UiMG1E0VCnbOnu0Hv0xYGls2+ ehYJAYQYJQKTeoVQMkQ9o7IaY7NpZ7/eLugZzVuCClGJRs7xWEhewGnUt4OtFn0ORgdMp14gMjaO SD+39fNFAUFeTkymEprutkamaI61hQ7Qly9T4GGjZKsaWS/1xgPMlHxB9UqP30t1CxvzjzaFNrJn 7/B2BC+4xomOLe/onsJ4DoTsnNY7iz4Jcx+dswF7aBSjVIywcUieKT7YB921uGdsgnaKvR0A1SY9 oxEPpV/Mh1JcZxbnWnfvce3eFisEtnXgb7LuRA3T/gD0T9LQ6EQnauuC9sjrAICsq0iwP+riRoyX IcQNhcvhy3J5yEDQd0CUnuK3HXfFBEBeQW7WncljVojvHV0j6RDlibmdlZa7IyFBxpjMfW9leyDF uZ+J8LlQ0g6JTyK9mfLouXhv9UoSfj+AduhKQSY08BTlnrvarx45amaa3hTt5+VP14/ObDBDCZBB gvapHL3ZmdEUlft6LCtd4FYxGTqYGcDZOCp83/qRtRBZs/7pzvScqpeJgzmeBYCINu1z8bH/Sj31 go/DBDRxjcI4Kc2ARTmx6rFOkf0tRUmczDRbZ20VZl/A/KVyY2WavfJoxDA+BKE3ce9uPt+V2blG 5ikW0WjH3MHOiyRTsgRo1x9xVihggLtdQ7IjA4kddStXKIBgtUxATE+pPIB+fw8sfHFOOQRBngbU YCaX84DRehYbaDuocKtReH8nZnx8WFWbM+vCL1yNHisAhTKwFGgc1ugFutjaf6l6d/Lbh3Iu+VbJ Cr20NQdYWXUjYzMsGMU1A0lKl3ZEb7ClPbsp4hkI7gVW5A0AZ6YcZyOC+WwZ+ACKIf7tjYkC03hd QaGABSb/DQV8uA6xOQMPceJkZq+cOHvpIi4FB3y7OFxg93bW75jtUmPyWPS6JZTXRDKbdRvCQ/ON j9KHdyg7ACLADoPgB+3Q13i74tux3Xao231L3QIqdJ29l0Mf2OwWN/zbSLcCUNktOdqOTrd6yNit ptV+o3Srh5TdKkFp6ekWn4aM07JbVOGaHqhoWEbyh+vkmxDoVjA1SdSc6xlvFSBBQI7OAITpornP vZpRtrrItpmtOy6i7Rn9Z9eRpToYAA1KGgoXBdt+ge2iAyne4Ugekg+33LPQyEuhX0NH4xS+gGbq QQfRo4r3mu+BVolojsR2oukqWnZPGKJA8YI0ejHrl7A/DvcBzLWZBo6zy+q2RBbRYhrNjql2YxMH 5X8PTvg3SCpAc9chVUKziCTSAPMmhmENkE+xC31Wk6MekS/qkBL6ge/UUmEQJSEC0hYi1Q6JHxhh TLGlQ3Oo+VxhQqi56b9vdaDbHCoG7XnH2sq/K2u/aOKcVMHdRmLJmhzOfgmt1fIWI1gQPhG3X5IK yP5faR+2faTX5KfzJ3YosIs8fPfQNTjBHyFY1ItujpsdxQCVNUWEHWfNjHpMcFEEC+AtHs4pOItg SjakLpxw0P7htqiBRH1CRTs6quRba1C22/gRJosA6WDaUDshMfrWknHLolwrBTfeSSGDSJo87R3+ 2liHaZqKH4KYMamnHmLODqVmpblqRNBYWEK2CrOkBTQHhyW07xT13x6rISQafm6uS/+S/RJranhB hod4JVCPdWxDKTbyQuD8oIYX+tg229IHnEOxepk8HFoSaUf3N0fJebGRbrui77RdH1te6rK8lCEm MqD+AJYXRxGAYFJUUibLmh+9Aj7jvYbnRv34kanKgSJa68h+ZuzjsGlEVnTmq45HKXp/raSYQSE9 cci1OZBTgb2n/voHkHN5bwPr/df2fuJVpWlDxZAfDtyu3gkt+UozH9gRVFzgCdbVaYjwQFyA3F43 JzaK0BG5UenVn3CLiR58yT9XdH6gDcnfppzH0CM6o3dqWjTxoZIyp4IHHRuMHB3y52xt565z6mnp KSYwgh7Gsu529hG1xiICR+rAe1D1hxu34E1nDz/GaP9/bOuGRfwlatCDmAmo23Vy+7+/BH580SJN l5l29p7J7iQgqB9QRULR/pox8DcUkYkzYmG0i2a6UAci5HFQa9xb1gzFnJCoqjmzRQWZIEiV17cK g1IHMjcWmaelrLACRRAX5pOupc6aUljrJC+wDLQXEPV32DeTg+ue+XoW0HD8941wJ0cAzoZPrhZ+ 2A/bo8I1zheAyI83ODffpycQx3xAh3kYAIwHEOqV0JWNDCH2IqSxFWKRAuqsI5kd7NYMShbhiteB bE4IKY4PMBDHGbizvhJN4Snvey3ZKUnnVN+uBEcgXDCUOA9USXWLrZC4g5MBHxfRG+VQfHzKw2/I Vnda99AAAylJA67/qVxwbUVKb1FUbdALaiWY+sYGRX21iGbpKlHYpbJCb3nNe95N1eoAfwaKAdSi dQwET36bM0j9+RhNT2fxeeAHnVQBok0OnnqjW2L6fr2UcPWlINSyB/0gwwJhewfVzg== 7QeJ6zphfSsSWcoD2Y6iRm1lb3LlUMJXc5RtJvvfEfc1HuDRhnEnPUJgV+BuPST2n+t9Q93GtrZz CS+16pT16YSCigqvIKzIHwiWBIHfBLjJ1cAbUzuYWZf9hsWVXSlkO9BU8EgXAM7O2kxEsTRdB6k0 nQx6r2vCD6ktTaPtStCN65F8yAYao1HT39k+ytiWZb403/uduTAA10EsDV3lzFW7DIN8imPl4ret yAiYLISSqQMo1StoE2cglCHoaQTKvRW0XvxVkrnVc94chELOZxv8zGEcx3kZ7r+uO52iwHEU4GYL WAOKseu2hc4bHrfkNOAkFrdj5LrYdKbFfaduXzSMJ3HSBn852NdBolCumOG6XfeeIgoucrsT6u6O Bt6Fs7JFYk0S7cPne5SLZTjQZ+3ORmF8qIuvnPfAmVp7HCjwOIowy9GVze2Dl0XQ3XlXHRlNCZoG s98OQoNKGsVFGbq6by2xfIKUVVwxGBHheFiSwpGiSRAoI/E8DhBHzP7qtH9YPPKSL5y07G8ZR9RF gKc1vS1EcD4nmTFZKQqmuPq9NXpXI03Q7vF9no8Bry55NWJwDf81VWsx7/qtC/a2Uv/OmXXcgtm1 u7ampZ35BloUzdu6e4XBIH0pMqgMG/JspIU4lgYiIoYs3E2c/CzHcuzgInKlOF4+aZAwIe001ezi RpA0SptCJ0DQq/pRE8STK3sWwrQNbkUDhVEvzIaM/ZgCiibqSdMghClByLYg2HrUSBFqwIGhPNbY x5wkBMKoSdYSaUdpScUycjsjVrQ8tzEmidz0Yb6hC8BDRN4L6elaAeX/mRQnP24pJ5JtrLWnH1mx UIBMnqVzauMBUyyN/RZtNkXDUGTe21yQUXfTlkEvlMrgE66my6d2hpP0QiwTgxp3YldC8PLUTvWX 7taOLkwimz8Y7IUBONYjVLy2Hh8wcFYRGXHofL1nKyyXTBr/yfLLxMvkg8DZQk0exRG4F3USkk20 7g1lMR12hvHwJdoTSwucyOWQyfXJMhwinNA/rdTI/QUa1TEhi94CY69Ks4ujEB2yPrQP+BAlVw6T gGlEkghWrKu3jhYoaU666WOysA/BCGsuKHfN7hQtSt7VDx345DiVj0tLlS+gj2IVvwEKyOMDjHBJ cwUVTqM1JS4ga0/i9jrKxt5BA7ksloxDhWX7qDltXYn2Wz2wBTCNm6ZDXPooil9rHJfVg3MaPB8N /IoV4e7REG5CvXsKwPJphkFwwnid+p52XdVA157idRlU6AbO5fGZciA40KUVRK+e3L1Ow8qOhDmV GuUrgKocoImDZmui8spt0LGPb4SNezBfhLNoGeoYc3SkjzITNHtqF/8HYKm+Rk/vQaKe24Nt3A4J NNXdTaYsZ7MYQYjHr0gW+di3m1d1IC8fBq14SdEdB49X1i+WSv4C3kAxOBl6BobdKf87OoDN367m geWsR29d89HV+Df0+g0ht5b7Gjpa0mJKDV25OaG3cbeJDrQ2KwFQBt1ddFtF/wVeQVx048Yj9mb5 /ndE/Kab1A7EqLtpG9pCl2KRqhCdhP5T9peB5U1HfziEpL/b3Ib+gyirkdLgy0t4WnymmFlP4lCN 0D37O5JoGQd6zcCzHCxDa/wZ3GWME0iCFxqIaN6Z9zU1YGONKlZv4W8jOwkg/qlJiP5Ylhuvf21m +sbUYPCrNtzHu33UYEqeFK04aolGqQSir0F9Q4ftgFcf100qgnbzTrBHu4b26qb3K8sbXMbAyyPb x+XY6wTRx33m9h7Y7fDoCqC2S58T3jQ4Q/R2OBk2DAFqJZimq/4tfb47gkVwfy9mPhmgxaJNPVqL TAC432vaija0dK617FabYHT6CtlHcrKBD+zQTmUtUu8Uqh44CR/36ozSb6azCq3F4b+woRMQ0Mmc IzonyekKre8XvJe/ro2R/XRBoRL8BTntn9uwRbxBmf5nce9F9C7jbso7GZU57TWbKu7TEdV/7fbi SX1Jco/ht5V+9Qh2fPWrdlgNttf2/0udOsCJcBL6f06v03JesDcKniRDW8qoaNdF1ZEMvjxudurA 5kw2zWMfieRCMUv3AAMRsVlHJkrFq4u9NGw6yCXtKVP709UoMZcWpjGJNMdX9VvHwcLGzjNpPvfH EX0O3ymtddf2HzrJGs5dvPqk0SDeZaGxErc6vTSg/61NHiRWeoLc4MsUxQsrnG0lqKsL9wag+7pA 8874lRrVc38MFsu1P7tAKSHdfNeCOKmfJiJU19mjOUMDLp83+KqiniIPJrVBUYHAs2nn8TOWYthY 6mD/wzE8dqKRJLXF4MRuJ2cGba9YcHzbybHPbZ7b2BF89CAOjMhJSaAcAHQ2735YZ9g+QBGrumht MNJbCYoztH9dDzIlcPdkbXC79rS/+3XjZW5e72sBWAcd2uCDvwmswwJqTec3heJsGeYbSncL6d0j H3pa6lAJII915LzgODuXDlk/OkPXyerXtU9eIuoNyGuoDK9f8Wi77+sIsg925qsV16uuI/18MCYN MC7A2ljPQlBOtAu4Ov01CbgsrN5DGFd61N/uA3cfkQco7WA6i1XeqZGb+TCT+S2xOH4CpTMfSHNS 2cg0pDdYnEIbWOWdMBbwUY7uXjTPPHDzl933pYrO5ETfK5WULzXDEruL/1gxE1t7LEPyVOVE7lIO JB1x92gDQPbBR/+/9+s1PE9vFCOv6OU5x0WPWpPL7xt5BUrP1sXeP+fo4Ci1PpCftYePLORZu0dw tPDSR8C4KcqfNlK5t4m1yhxV4l11nIE26xqIKgI4gQtFoMAjLFxXrQFkNEV89G63bL7iD9rVz8oQ dwBU6NMN/HoJItL9KQH5oMGmwBOwx4kDuYi/UBLrM6eDvQJSj1Tv2T5t5nsokvzv7+eQwr5xfSy3 D+E40hK+3Wn0bMU9nT3f2Um6laAlcUOXBmqyiAVHWFjhXkO8N0p+ZZUq8oe8mSkBKLGo7+Q4hGSx pEXLHvRpRRhg6EC0aIK9Lo78g8piD16rxhFfTWpsC3LhES0Wjvgia1xvnDdNk0cd2Tnv2mjgxWIh 0W8hYj5zIocQyrrSVLAOOtKi+wfd1tMtJuQGtn8Wea947kMt6IM/UAWUmzVqtDHY6cq7ph6AFWfh stZ4batAiohm3yM/RC+7zbK0TN9RGq0bhT6bZIwuv5hZQOs/mMc2YwDwbcZgP044UgtL+qrYrbHL +5sdkI8z1f5qF5L2YeiiNKXsb33rhF7OJvW2l3hMPIN1QjIXLC65lQk9rfgD0zAHHeY/KV+ozeLL q0xOzbV+Lk9crgOtKt4LeRMu6IW3NW4NoN3NM1Q2wcF2I58bi8I4XJgmc3EXjKlYbQUr8y/DFwg/ yZIw+UOAY4U101nJCobblSYLvkKelyRCaieyzCig7jj09jGppbO87B308ExIj9jvDk5S/9WDnNPD DG3Ww4QkgoMhHm4hH0trmr5a3dGE4pW5Ew5k/YzAxNLDrDwmAKPL72Clh+Ujg3bYY8/qpuwTVzxc voI0U3qYH3RDimv00cO1P6y+hmSSJ+ASURhoiqg0FLSdiAo4X53eAyjjYeLkq3FmDv2dK3C2MloL cckGoqiru8UcytgP8u3IdoAnETXHiaJ7DOg/bxmiEJB+ZE9EIVdb2eJh2mIz3fSw4pMDBnwoiYeZ 0sPsJg/zFM8dxcNOs2BSvY6Uw/W6oISNhyXk0yynh4uruAPUG//ZkIt6WYWDQXo4vluJh4UTpfSw z+POYwRSULE0PZyB7SKQ+cDYwpASDzvAhBBBD9PazI/Zco0e7vMaUD3RnULzNYx474AeFproeyO2 ihku/RcPh0IBYrPi8hBtIuUduwgYD3vPWZa7FOoE35jg0uaWMaVBPb4SQzyXG0fAJa7Cashe3HX8 RQ+Xc9fxpoBEc2Bdoz/oYULhl8bpDbnJW8Pk8Q0qpydtUEruIkgLZ5oMW81g4mGhluHGoIeTBnJB HQ21/0QP872TjPTQa0oPZ+L+Dkc87PppmaKHY2S6fxvoWmJCAkbV9LBSD4RlcQ+HP/EwUODBHz1M IXqCc1p10MM5s5wBpC/88dZ0Ejc9zCoTPaxp+gvN/7KAdu2AEQ97Y7h0RJlkFzPq6pRWqIOAnQg9 XNYnmHDF5F8Ry9aEHnZIrNXV3/zPIZdVjqhAldgE8uUOY0YdDyuBI6p9MjuF/m/BJ5p4uPY1nC9b Kj1cQF/aB/0WSmF6eBrAUljZ5JO1YqE8gCMKuyAg+tzX9LBaujiBHRPvQg/XRbvnl/uOqFgBWmAf D0OJjml6mDGpz4t2KtqveHgnvIiMHsaVWko8TAEtxaEZi096eH+0IM99P3D6M8VC6GHaFFZftN6b kzCEmqIgcj097BQdpBZr69VzKyzgtHaNz2Iz48WAE8A7Ho7lj7wQPVwyTmLTa2lwCCau5eTNQE4P A5RgFBwKhRLxMH7uyCh6uChosOjhyvBLZ+nhIxYMhH0SgNUsqQWBHu5bTwSDKwyxrBIPfyXG+AQ9 /GWSN7DGw5famSY9p4dJyWs8/FmBeXw8O7LpnOjhk85WbvStc6SNgTPamkAD5QcLB0cUXxO0726N 6hr292EXX1jlE4NNeBiTLHq6Tp+D9vBT+6EUHAT4FcocqJwjvjIVIygITVOLeN0EA7Xw628vGHh9 BjslZ+OAkWDh6traqt1VuNuodORJrK7oImY33dckBnG3vkCKpWmJW94VP9tIfCJLdqUVf6lPIZM4 KddjDktMGcGIRBQbP20yYYnV8SNlJH8WAkJoEmefJ59IdhlLrLGeE44Bnw1OHna2aPnHw2UfcVli mxI6gJjvKu87QZXkyE/ZLbWPSay5joi46cpcOqemHFw0JzGMydzw+8qL0gYhzsULJ8em8EdbJpwE GwGNInBK5NXTVF3pqOGsu2YIljYauqFGhFfQZ7JVxGvWfz6aUfuPstI43vNkxRyusiccGJnGYz7m lHrJ+x0WN72VAlQA+KeAjeh1cnVSu26JhmIjbAcD2cF+4BGgfsNI76xUVfk1YHfhHekKfjnOXyao RSoUFczlxGjZlk3MaOaW78csbJyl6WHCSkM6Hb8kN1wJHqvBIdFndggl0NF781ieYLjPpwAeNmCD BvTvQVSpaIGfzHLIKjj805EpTVVZEDKUOxxw2vipeOHFMD/1chQhxJDGT/nCgKuSqIm/8ROCXL3L J30z6tc7fiqLqLRqpNz3AkaA4CVx/87xk2umphNX1Lph4/Z6fu38qRw/mehV/duNFQkHljh+atj0 F49xzZmfQlTQiBw/IZovgnp9FHxaT7z3JbDtYMcIG/iKz4FJ4s59j5m8I5qPAGPm64RKwkKWk++N ecDK8FpV446qg6+PTWB3YNDF8qQ8vzVxWn5OfofqXC6zVE9YIG8kEdyAbmCxsunLswBpM5bexcAU Y/OsA/IMZheyuh8wRPvGzIJVsRWukJebByxWH4ZgYXipiQ8YYWFhEYROKG1lCjYynw== zACrMcJhYk9orFHJgJNhIMWS2Uii2FMpumohyJGglJbVcOjq26SUFGZ9OEwt2zdGguFJhxnGel4B vmVxA2lSMgdzgybMmgZtkfJ/8rK+EuKw89SDVX0uPxYHhFHMOLJqdj28DEpgkBP/mOg9lt0AI1ZT DlWZyD1KFvOzsPCM+Bjwp4llTOAD4We9jDhp2RmAK7LmVJwJ/AT0UYHfe7qmDcBtKw3QcE5gocpf IB/H0QCsF3BqE5A505mV2I0MwOsQKwjTTmD1BcTa8Yy2fevLR370/+Aa5rmmr3UoC42r4ZQ9SYLk 9e2twmLiARBzdQ60vcaUFGyWgP+uaL8ShgDD4fT6vR34M7KazziuZaA4OJBnZR9idqyl1YQ2Wsf5 oG45iIcOl2vBHlTTdq1RoRxiQGc+ZTYThEocxXNqIF7ONFS/RvEDjhpHNASBHnxI6qsRBRoCVsAv gU9e3MAZhPWeAEsi+GcT6QcCtJ6df6cRiM4uuF3AvXxGAUiOL5ILQblp6fNnODot0xSvfSUKPldN r7Ec5E812TXcNanfSWdy6VUDH8JZqskzx8N4gSQYJb4QdmDb+Qwhzssd5MFII5B8c0zlLdmByO2N 5OG7E3lMj4KetrYW5HSRvPt6R/zu7GDeIq4JFYM0VHjOauYh+KEMIwKkJn+qyAJAQg8kTZObElGU ivokIXBAyP/VnGjdkDaFDgSbesE9El1b41CSXAR25M5AWcPI2k6w/1bQGsg/kcL/bcrcbHv/VUPu wwPGfulHPu7zf3EY8666/3rO75yOM8IdO++/vOQXJ5uajLSaftD+22prnPmpyv/lUGkZ9ZaN4rz+ 24bb9RIb0k7eaNHU3XPPtOC9VDQEXgaxZNoyDJdtvD+KLpOxEpNz56K+IOSPwY2dMKduLGglgPw9 mGSzw2xdZdASsrI/IIzujpnd5J3dZ0/g7mxsD1WiljKKkOO2WY5ENte8cGMVOshTp6MLTHQ5i2G7 4dO0tIXtMGkGRJhymxnaH9H/IGNrXGCtcRo+t1gH5ZNjAfzC5+ZWXf8yZPbwH9Ki21Kh3UaV9Dlk SJYQ2phYsw5Lvb8T0RgnMXq5EeJ3HqcacBw7NG7wOP8mUDg1jwkngcOgfg8wLVx5SfsHRJKCTPng GJX6dK3jgmhuR/gdbZjh15RuZoeA68maJNWOa0NaruzBbBP2+weD0chxPd3KIiQhrJYOEp7s12Ld gO5TIdJfOdo+xkVzzXH6cEHB9iWqYbXR06AA2ZR9G4yPgvwLukzF4Z6wV7yK5jEj2DBH4GumZkf3 I+7IcoRZRVtmbqPBaHz+tEAw+NfWmhwzIIHCoDkhWDdDqweF8O+8OXAUPJ4TCXTNaHedNNNGBvBE fYgHizvx7u4GMQFgzd9ROWOgLWoYAcBKUbVUVxR1qbmR6PAAHAWRslgA2JUpNLI1BIBl/ikDcNlE S8gAYHLTSvLxWbcAsMpbtKcf26yu3av6UbMkoWKHyQQYgC1MFe7Uqi0AnLesIeWfTwHAjULDOvCI UQtwOQn6Z1QapEXSYpyU/a1yRPQkkMLHKHua9Dc1Z3NdQwZmXtZUlvndsnsHUNt1gVtrtx5Yr+FZ 8Z9ItSkaCc2IqoECFoTxmv8eASJzaWrgG6YoLQHE2otqLwOcWDuYoia/vdKg6Y/JN7qlP97ACsoO Afnpv59KpemzqOhu6XTXic+WF5U62h66Ci9LFNgL903WB5xhoxzu+i7uy0A3rDuWfHU5sy9Evuw3 92VjAnizoxkLEnDf3E69mwzONJGzb94/5R73Vegxfv7vcyqPbuaZkbZ2wfoGeTJkX3YH8xzue6Hu c6LozL5Lct/sV4BoW2d9Upd9b1ju+6/v9Z/RGR73zU2yoCShRoUN5yAjEc0ciy0izIv7yM3ouA1J Oc4Ac19PYXzc1KDh2JD7yoQo7wHHWxGPiBSH4Nbxoex60LeQfl8zKp+Ct9FujJpDkbu5b2oHGMU/ C1HGl+cQUEzlvu/m7AhA6uiUIeK+8INzo9IYO+CgiwyapbKlPQ7ote5/QK9cL63DfXuf1ogMUOO+ +nJIavbFYbmUzn0Zs/+2WcsurJbRRcZ9e0LYy5M3bPZNGTSv575w2ylVQgD3tYNMek03i5a2dof7 TmYCrig30fI/qeRy34/PTX3xWpoxy89vJWoQC05xBlKoLWY7w+wLF/soPxJui/TQs2Ga7bgvk2Up u3IkOM3aOsm+AyiwHcB9I46Df7OGFimiJGaVX67DjtxXt4dJiu+R987HRaaRHWx4BA+6nCnWS83p skUuJPmgGp/Su8QK4U6fLLgu54YhaaOS6o/OVnpL6JtIOLreW7NSd6ir2fUK7/8/KIf24dUk5ucm GHaBkhozjjYSGBJdYsMvgDQRjOCTcGyNcAqMaf/YYLE3VU5Vl4RzG3qARHJA0+VnwsgVLIs1FbuU 6DKLEyvIUjZ8FoXeCUgNsZk8VqLUpKfK3I9iDcAKjMwU8im1I7xLxtv9A+HNmFa1kaPXaRmPtF3a gHm4Zut+PJBwayh6ppdHXqnFyEcPsCJLVeo3F+biBl4Z1NoJ2hfJdbuZzUBJDR5pcuUKSmgn+Ntp obShKDm1XAEoMcNtdpok3SHa68bdjekJVu9+gmc+ASNTQZbfL9ria+SxUzvefd4WY0msePHdBUQ2 TIP03e8blFX4rEh3EjaavBV77OOnBBeYr5fiqiTeGJy4V0TLrLItkyFrwGfWi7fVgI5QdG9H84n8 zaLBc8WrgCACKbQDY6cSMKN7ljA8IoVz8hE1XtXBzvu2Z+RMRycilU0oEcdnkPywwHZh85ZOiFDJ vnikKGRouBwDoGpigBLqXEU03kwSY1DMBfqhZIIKNG3xt/ZFTdQwL42g1oUjRI81NeFYE/OmqlHO 8AzS0JnmWcmrBpqbP1cO5kWnEt17p/CiiyvmdV8Poy7cvCpxfpqYV64VNYNjSjCvrS/kewi61zyB eZ2jMBEn0Bb8D0jWUUi637Jr7j1MFI0lmbaza97uh0pKF7Jvsaao3i71IXVfKBviSfAdKgC59Fit QE3DxIZjKh2x3L4Q6ob5P80ABoZFhA3XdI1GzuvdZ/tgKKYPWnEec58ArLBUX3SHCIjbfDiYBn7n 73v2TokdL5jEFQkl1NRWalOVgMU/Gee6JVLwwCdDMsjhjolXCqlOLiBdVxnkdp9XHTP5xMIrbV6T kFmHhj+e42R3rE02rVs/uUH5cdhYAj8fuakCnZNTtkrFrO3R3krzOM3yPAWrJpqAVHQyKCdwiGBB xLNBisKUPSjT8jGe5KK9kuKHmLvDjYMFFRPYQLES08LU/KsZGDOTM7uJLl1ybXoVVYDz+NwSUPe7 mhzgC+6cM8qYE8Bj/JLllwN+w2p4Ussnbf4C4lYUI3gVXkWZlZmoLF/dqlE123m/daFMqTNI5/1h nX6AVuWaY523Vvrnd7pmUb0lZHfe1oNeszXczkuXK4Hs0gLKHD8w1ftBetr70NSS9G1mD2NfDXqX sx64QaylO2/UTTwogQ3QeVH77AK9treByp037376ENHz6Lx8pNyYMKkM9G4YJylLv1/5ZWs2nRxK 5alcQ+I++HpCy34nt/jxNX4WpxHq+l4SMQGZUqdLzOca+kGdxREtaTAaO83mZP6BvB5P3Tc4xYbe CLEs3d54qL2B6RDWhuvTRvY861R3goqA0JYRVOwC8cJxhtMTdLvm1PgaD9dxiuF6VlrIOmsw7RYd okjNHemWRJdVBCGN/qoolPVx+OCYKFHK7wteWm7ltO2cYBccyxyD9WuUREEIs7SecqvU0iAn+Tix wTFdMEpb0cbsnzWyteCYq27+d+D6GQsotvD45aGDo06bYL8i/+EYt5gxFQGNjLQXIzQ2gDERHPub 8NeXpbcNHGa/zTQJjru7ChNZMLS9D2eaBodJL3xdmkDm/0yimntxWXb/rSZ9HyuT/tnrgnvLg6hg cd3hXUBJ0dV3wXFRlPs/tpqlgRr4/zOVsH0/eES31dBNnzxCxGWhwGvWNj9IMhjvw3p/vr6DVw0Q 1KIW6eiV64qWUSxTUVn37yVcHnJ9NJkG8l9jZi/KMH7rFGbFXiZvlSrsw35qMPtnBhIOrhRd1iQQ jZqvmQ+Y1R1X+leqvbn3r7hvTw20T5vIJsXW9ZrACo4iFnCC+vdmYfe8AqlOOAyxhnGWcXQSoF/v BOEo4JcUEOOkLcMneDxwfFiL7x202fm5BtBfuhlfqAJ3DJ5FtZ8Ec5bKgxlLSm5IpZW5bxkeDUyP gwWHukhiKJX5o9K2NM6bO7VbQI6KUj7gmjVw7DdWRNYrnx5lfuDTpI/DrMgt8+nRNMGHxy7zaS9o baJYj/U9bsPOUNskim2ViFgKhIFUzxY4YKaFrWXT0p21tF6BPp9WMpRX+NkfE/FRRzgI05l3LVPY bFwtvmKTAWk4w6VT5Gv0f42Pu+htkhOMoKpoWzh+FQ4gVBUWS7t+qONAOWhuj1zefd3KIV3acSZB GNW+Pv2locGU/Ie8pHVssMz5kzp3wvkdPvZ4js7Km4+o6jzqznuuMNF+8KfyKlRBrtp/AOebYz4T qJ9hMQs53TYAuJo1VSX/sCW0B5nuZaxKWOX51fZ2CSZD4Vg1an7JfAcw4HvD5cCVFpRo8dN50kT2 dG03/mH2BoUaztrN/vOYTI8CHxTdgW8iSTyJ7qGimikJfcUlCCLEqKNFI8YMfKEFkF3+u1wLutKn oOL7syEAzXdzW0P28pxXf82p2NF/xCftXKhlQQWX5Cm8MetGcbkFgBzTlE13O5eYUACiXerCJonp 6tP0rFhm8PED4L1jzEekZ9EEsml+51Tsksdr+9mywMDuexvacQaBihgZX5CsUWy+mFrhUcGW8SVN gvSlMG6OEzaYPfMaKgI83zDqyR5K3+CbcB/+9vp8ZYrgPJa+yQzEO70708DOpO8fH89XFaHS9z3O 863kqknfcL4Y0/Ml+qQveajwPF/Acdvjk6VvhC8G4/kyBkT6RkXCrR4SzfPNKfuxQfqCSiNEer7E cUu5kL4hBlE8X8NC+tKv9oXvqcjM5yb70XJ8xJcRpqDV2dLQDhjqOTXhxxhJw1zEAsm+apARYE+I qJWKVp7XV2NWI5mFFFw4BYuGjhO9CNczDF7pSAlYvsYZ+P+X2Zv8tmFafp8B67wJfPlWYjLWAD/A 96GfiEqKvCZmD7WhXqdsA3ocCF6YWp8MxkFLq6p6cmlVneGhuWXM3KsCkD9qiBSxxb7GHDSu6oJ1 CKTu472NvmJD8eqXp6ZjpiujHWvg00nE8HY2U1bgs37J6TeTVAZ3Yo9KJOd6fJ6ahvPGWzTGDMfh sastzbUYYp6VmW0WW2c3O51HXqJx/DYRwfygBTKeh1nxoEcGb9FgDjL4k2N95HPGD+1PbG2AA1gK bS/NRsFiCAEMZeDkUOiR060tNUHDbCIogARGTo3eCpofpVECOHqn4fmfgLs1AsD0NQ== QSSGm/bfILuQAPbbwhwMkAsQffKWALrbYcJlmtn9h61NjpmLomHHJ5DWO1im95YvvcIfXFqr8DLx Cz7ewj/k28CeACHxJRU05U3cocmBkdyDw2t0DA1mLhuUpiS/FHcXvQgP9zrWUTi5cCjpbDRZ16b3 zXU32DXwOpAsltUUMCJuOPCadX4Rcij3Jb9YWMiENwFt4sADXZCPO6X/NeCbknikyTkyhiN8FaJO SZRTk6cqPM+G48I1I5njNPz1YMOZRgn8LeU7EdWc2Z4RCCe5+LazS51UamjXsA1+clsDt4STQbSy vYnny8C2k6jWTQavLex7AHTlA1E8xgY19piMaO41JWjNVEBr6qvFCEagIPRagBV6ZioPwI1A5gY2 xsYeGGfPZ3DmkKHOeIDTST583YEqgYuCju9eRzop05ZQvaTmk0tcNIQdcxsQqI5Zn0DGH4yfdF+b Yw+DQUsLMy3iAmTTgQSO7tGFCjjzAnYJERihGRwN/gnflUfZy3gblJn8ukswBOSidEWxXl1JSdZv dRHsMCtVHlc/m63mAH0CWxMOrK3CN0VqiLF+uvu1Dz80s6teL8UjUafbw4OlTouXO5/LGNjOIPrQ vX6kjCAhoGu4t4Q8qMdLqRR8HuHGgeulz0gvstNLMG1LtT2AbdsXmSCLA0OYjVqR0XdkT49tQQg8 GQEYQsg2Bvjpwzty4WSbGLHnd/qmMXy7Itb6aCaLoee7DMEXJzQH1fqtVQmWIXgKELJFrq46cn0M hk6Wy99AYS7zoWLPn8swFxLfMUoyUeH7cZWXTYhQKEUdkLyTd8y56OZYacM3gKOpbF80+g+iauKC P8lMgAS9nfZiGykI32GDVECRVUmpe6fS69FICHwfPIwgqNWhsTTm5fER2isVl85R3/nA/pfreyZw i/N9HiCppCbTYO22qY8xzcYNkJMDAF62nT/q9bH+MQjP+SsvOkqHpa0marrhd4TfkECsahuzOvuS KH3Wwq9GkujjcMUMkDwhL86iO3wlhDJaUoxnjAZL3zYnQgIt3adzmid6RsAi98EGpRIsOMjcirXl UNfQKMA5SFQt9iFzgSFJILyR2EUzn8maZaLfZ18BTOA+hkKKNmWQ94/tWJzsksFPBrDXxGuKsYfZ Zb6Gxqu0pa65RMExbootmQhcvY2OcAvHILFWwewKoQ4fq/XQdBUO8U1fzdrTcnfp4nHWgK5v5HcF XyBnlpmBytuKg0kJufJ0zFnBUwJkNoGqvsfPDgNN0hIHtnC9jVe9h1zqgXtB6pH58N977JmJzZsy al7Givv32O0wdPpIlcgkL3vqld/zjrlRunfpXc85yXycaXecg0Qw5ALWYs3NVuPtGd+vhmFHRyIN jf+03mWHA3cf8DaypxxXEvTEIgGU3qpWLTWw4nxrJX9IZUWus2akoAg7VPCRiU5g38Efbwq4iUhh CuyNAhwx4laEtrFqpYaD/n2Q3NrP9D1ITNDACR88y3YMHshhYnTg3VIVOy1Q5VWbmYxF9YpXTXVb n+uexDx6IgEBV28GdZGdXCJusEDuRQw1mrORAuMGKPQ73RZdRVoREkOdYgkBJ13zDyaKRlJUxLar seGG8eEoivoUNjqPMZGOY2SZ8wMM6mce+r2B9QCpzPGLywTOEykIGFmLjEGxPgEcet7T1yEmkYzc 5Wc0QoFwZr2OW0jK/1HTyvVmU4GOOyRXq/wLFWYj7SiFXL58Jw10A23h88KBNeelewSf48z+O8io fc15A37NSw0lYGKpPnp2txm03AYSc6n1y5h0BpZp6RZ5+uCCKFSejO1IzkAJCU5O3PBXyjgTfQdR BTILK/e5BeKF+EPwyv3OoYe8rVSsxZFFJTJ/bHf4BiOOrgiz9YTJINfSR2ADfggtuywtHNWLVc9x s6ayaaCZgMjyqDI9ls/3B/wWe1FNWiNfRwca03Uecr4lm4u39nthrjvJhw/4Rno5IVQ0ukmO8lxT AJsw5cZEfnmwDwibWB5mZ9JPOEXgXLkQueQaNQ1xwTn8SkjvFYJH6zsfcJX4Yt1CcnhzBwgXLjou piB0x73pPzQ02Lsc6REQ4q/AC708/ArYuZfOK/LE/wbhEWO/lXXjwq+8d+/09bRwFVCzrIs5GW1b BpaxBc6+GmUkCyo1jbTkYWBN9XCcZhwLZ/kgKQgMRm1pmSv4WIcVWD71QLiZk/5mxaNlukDxDJ7w 6zzat2Pgh/VZgRF84c4OZWizHki7rONNt9ea1D9URtmirYCaqZ2yr5DEAzxhOVO73FIH5p1AsLOy GkCgjTUlDQjew1VkNkRkGbwAGgfeR+OqKWrOOX+BJlR1ZJh7zihUWOBO4wVgXUNUMn1/Kxbvfqne KBWk+IzjviaNwUsHrd7SHLJFrj88Rngh8PCbIi/iaY/P8+th+XkyM+mgsf0Gg9AQzXNCTxX5uLPE W7VNSxm+VwT7YRO0z2esHOtMKstbQckXGXaUl0ueboCHMKY5WuauDE8lZphCkYXq3Er0QNNqJWV/ OAAczUzXM3NKpehDwZSOnS2CdBvcn8OtXe5pg7ydampg0o9g5b+DsPtrDxK/hI0+63oVg1tiaifJ BAAb+vKgHvBgJV9i0rNDgIQvb3gH40pESSYzJte983ruqv7KClA+i8EeQP2ou9TC4kCX332Nl9fq +BPy6qVgmazA3fTMqI2kSsUUwG7RU7Ft9JvZxNTpoQFLLZfJ7cGCZbiBUgLNxlLRBi0AaVQPn8Cr VkYU86eYlKp6ktjfBhj2TfKlI6MiwZc0NIANXPEOwhc0q/K34MYSXgG1MTNuWudjgeDO37IRP7Gu JNjbfXAeC+tvcU+YID5kzP7e5Bio+V6YCk83WfaL+Cz/SQMMkBwvpfL6TguWBdK19oTxUpa+ezuG tXQJf05wDOFIyDMSgGDmaUf0Gu+6sQHOdPf/0FlmVGkSFUlXp9GVgRazPULb0BRST7EraIlam/qc IKGD2N4WDDVRV8g3H9wHC4cKPZT5BpsQkqCGRkdW1ePrAUyZQqCpj4e1C8px1IoS7Zo11RnRI0S7 RxEDlsQ+M4zcXqwqwzbpICP341Up4BCDVBzDxrCzCpmmdBx8uwVfiwVYMupzxo4S+ZD9WkQO/ArI TokFGoJHFHFQcqQuz18u3Fgx0FF2ex62AnYkhkYIRDDlmkuw8UQcVf9FLR+0i4hbulPnQHuxKbaB SVe2a83wW3n1K5vX6MAeIZoDOEY+mU3dRJ5HwmTRQAEq+fM4LXTs6+JTDQJ9EDDWTDGMJ9Cc+qJR wI8a+CX940eZj4Ydp5nRXgJvpxh+M+vFzWzQkGChwOwE9JBKy7ChY8FznYZWMfrxdcxEwDWkKtEB IIjIzEprxsjStQwFZoHMQF1AzJ5AMPAWEA1geRSABSiJYu29yRGZaMY8ZPmZNJ7N4ThFjpiwNKjm q+Ugj1g1UU1feMU3+8IVsKxUHSrnbGHIMn8bCmI+EJ0z3PUDnGkh8lq/E7OzQx0K8mE4YVwi/Uce Mlc6JMia//Uy3cNDPdFiAbNfIDIWJugQkqKTNvdwkS1fRqKJ9YGpsk4J880wn9D1vHgXfbTwdmxO MR5yjbKKNhAXYZJ7/wnLLHgTikbil7NrfeIQG4x7Q1hs4mZA90K083HgxkCGHKjeM/wpp0AlC3BM 87s67I/78MlvZqZyJ6fp4ZBTFmh31vqYUp1dX0Zkht3/nqYoXxK7eZ2H8L36D298UXCM4+hEiuPh XkOyhtp6Sbj8O8knNOcdH7EV5vw6eg5aCLYYOBxgsflRruqljLxAnd6RMEOtjzcyFOthzBzGiA2m eFdjOjSHZj/9j1q0cw41OOK4GyTT/unO0e6yKs1fXgY/IswWG4abgaE8KKHP5yiyK5S0tKALy+sz 1wEoU4399ydfpq4Z9FsOm9zq3TKhXpW7HANjLEOZqWWj+ELfQpyYcwzsLk8LIQL9mQtLcQfNZMIL c6D0+vDTSDmTuztgLbMtrYSsoAWGx/8gTEd2pBOBZMTVFZ+c/GGMiWgUrgS0JiSkk5M6mRfDQjHi 0Eadbh5qXAw1jnzjnUcmfN0J8hkfBd70yUFxtRPvDIYLiqcVZnx41aJY8g9daVLEu9s8K1dB/nkc 3Cx6+jyFX2HwjxYPYtvh4f/VO5jaa1mcO686KOjWKkBE2wM25wKjpfVZF0rgDmp9EoieNLmUlH9C 0MP+JkgAGc++D++B6pPDawB6IJFc0m3YBE3a/4avYZJav5jX61es3KMyiKK600DYap0ss3nD7G8D fOjXI5M1JbWxWTDdHdw+k6/HazkTTtJZCeF7Z6LTuvJPJu2flpZwDkkIPgHZkhVVVYP9S6Sw6WJ6 IY7kUyCq3bPq6zzkCSJYaMN+6VEekqCXkuV30qlnJKW/JhfSlNJVeL6CAojpR8XTX+iCEENN7kX1 SrXj7Fhd4M2wlCs1/levEtn1Rr3Rg4fP3ZvmWDxJ+7WxP8yXYrllWgpaYnoiyV6CwX520Aez/J6O pX8+q3QOhzbDh203F1e8XR7gGxq9hBaeKOiLGJzPRQG3l2TlKYto5nIvlVvvM4sX+4s0/WTpIEVQ gVDKuUWkMbUggLov7zDRArq+6Ev3kHcPJDdhhGU84PJyQjVUQ/wSbav2mbw8grM0x0kaK5H9oujM 5kA0Ofkt5Xp54X7GxE0xtzj/ECoDVGNoI6S8cgT4pZ5/vLKk0oL4vXyVXB5UWe8vfWID2IYSAFxJ ZGRETMSEfUAJXpiUcRst2lE4hfWoIzD9CVjkle7I43q3StEqCYzzeSkeB43clGcFPFMksqlP/as3 J/ryFAlVWVK6O/hZVZ8/2r1QhJ8b2SwhrkLu7O5k+1T0VogMj3aHRbdbUrxkTfIa8+QVxISxik67 tpbIDmvo+sFPg+zmnpuaGY4f+UnAsRZfeKoR5XvdJqRvkwAxXEk3Gzd0wpuDFs2A580AidydiB8J KlBk1oiOakQEBQyxafZX/dp5OpZ+rQXEtpA+9KYmun8ea36TR2b9BX6Giy346Y5FOpwOmEMg+xdA yIETzq7QmQbv3nJRosSHoL4Wo751VZ7nIdQBjaCvd3jfm5Q7vTYb7RB/Rsuz4x61vCNP/zF+Sz4M RhQjC89u4OIWTk1lwjmGPAT0kbEOuGtv+FfG2tQZYGHzTZUfyVA/TSpxdY2htQP+zRL1IeUC4exK KHRMQhN50344wGfqO0koYzew/PgvpAx4I1BHe8zfvEuzB/OM/9dnOESxTGpHuIIL0eS2GwxNcfFE 0ZoxdE1c+hi8oBLMmoti+b9t14h1u/XL+SJGGyeal3ZKMnUmzY7bMZKdkzStVA0Y962pXxX8kWTG jho1NhiE+wnuOq/5qAGbq9dlvlzBfxb1Qpbo47FC1Lq/cobCE+jWRjDJKP+ETpxmQK0+fQ9Y6Ngu 7oXv5iPMLWsQwMXieE/jKAHXID4ciJHtnRZrbhyHZ6gj48/bmg1OuET00LWFCbZIYg== W20Zdk08ytsWDUwsik1tODrYrGw+OfnUTQhOYL81jDJEQFZkEgePyt08GmGUzaNMvNeJivzneDTZ AzakZJtnx+2rWeGjVqdKkATlUEHe8TSneDJiUowky1YESXjcxCMU8FnAnEDEEqiB8WtrEKg5EI2P 6YZXvpuzJu5pMLY9avNRx7TMjXBoh4LEHYlCgGxYj3D31/vSSB00Ex4vG4m+cIRBaplEP29qbYna FSUG1rQR2+gAC7vm4WJAWCvOgVdMKX+WjIPqQ84V7IAB2wWNSQW6qyTg16BsKHTOthArzc5aygM/ Z6zp8Sq3a7DJImo3necSMDH3a7+YEjTjJTkluzxS26ryjtEmvGDiX9KisE+kNBJzmRLEGxhTHTMM 6ofce5i+QBZuYbqKb49z3DCYM4KtbiGzDcFozIdtDMD0jb/0+n3MjfXUl2NA52EkKF8DOSx32EXu GJrbL0l0AysDcQhCKsvotCwau3PgYlb5/pEE44bfblhZ/E40ikW8UOaU1rm2rroq8raZWqy16gkk avQOVz1gfITfTxklo1voyFb89N/8UZoOrgLiMPoHKsfmj+AEmuozc+kByN4YwYL8O+Kj1pksB5Sb dwTxuzXd4b0AMI6duZQl1WN8GTShZWL/U3Dw2hiS2Hu2XF0HXUogsne+LMVQb2grpaWm3osGEMj8 e4EeHBGkIAWIGgPa59vh/3bzJx0ZIWM858IQZ9nbiqlgcDFFCW8nJWM3zihq8V2gjRJfUz7iEDwQ KRdTkRfSLrvKa4ImWYqPBwBg8S75py4KKHkWb0RWW1BXBj9CyKY+yLeAH+/sBFYqbN8QzNxspejn gM+KL/JyJWViUTqaRGTq3JZeBAqJZ50SL9Liv8jx/3EFZOzBwT6jt+bpA/Vjtw4F+tZsxgJJk3JJ dHCH81x4aB4A8tPw+ltB4AAnv+DJVF+3K+v0YimJe3gqo2sg6/rHSTzlHyq5/KqEE+iLVkoXIgoC Ew1e60tSLVjFPzHl+YUFkcUB6y7Q4iY2RRW55g6UhvQ1OXFcG3zJNBVwqXamcCcT5Tn1NIxVzm0Z BjeFUmrgXAQ1vh2XHNW+elLar1yLppfAiHAj9d/n+rQtxlN4EWP/IT712/6IHfwMeYhiDryws9yp WZGWGji61eER7+I5/ooxAeGYPLPnof95zR7hmOMkcAuIqwwiNKYcan9CO8qlS3EBUn70f5lVl4tt wG2oDARCEQfgPEJJ9E05sHDKafJHqNFCHDYb2lxsoJLu9V5ZRCo0I/FPC4cQw/MAEih0yEUWgn5w 47xOjfwV2ToF88vP1g7cnsbPImLu3yAF0cQgNLxEBP6jKU/8Oa+THCvPubhlFChJfZyOPkseQggv taZjnxtlWlz7nr8rMYXC+vDD/rVewisosHG0SsoBVQB/h61DaidQsOmcfuoA5PLquJfukVTZDmJP 0Z1wMwpA46DeA9V/GXF0PXbhr+ip/+PvqZ/GUS/0m1Kv  24*7 Support
 Tailored Crawlers
 Data Pipeline Management
Let’s discuss your idea  

We Cater To All Your Web Scraping Requirements

Helping you derive data the way you need it

Price Intelligence

We extract pricing data from more than one website in your domain to analyze different price points and deduce the mindset of competitors for your business. By utilizing this data, you can create more effective pricing strategies.

Sentiment Analysis

Our web scraping experts evaluate public reviews, tweets, comments, etc to analyze important public opinions and attitudes towards your services and products. They perform comprehensive sentiment analysis.

Trend Monitoring

With our data extraction services, you get a constant flow of business-specific data accumulated from varied reliable sources. This information helps in growth, R&D, get actionable insights, understand market benchmarks, and more.

Lead Generation

Our experts can scrape directories, social platforms, forums, event boards, real estate portals, conference websites, recruitment boards, etc, to help marketers generate useful insights. It helps them with more sales leads with likely conversions.

Brand Reputation Analysis

Our web scraping helps you track your campaign based on relevant data and metrics. It helps in monitoring, conversion, market reach, social media reputation, etc related to your product or services. You get a deeper understanding of what your customers want.

Insightful Investments

Our custom web scraping services empower you to generate relevant data as well as derive insights about future trends, possible opportunities, buyer reactions, and more information to give you a strategic edge over competitors.

Acclamations - Sparx IT in the
Top Companies
  •  

    Most-Trusted Android App
    Development Companies

  •  

    10 Best Web Development
    Companies to try in 2020

  •  

    Best App Developers
    of 2020 in India

  •  

    Best BI App Development
    Companies in 2020

  • Top 100 Mobile
    App Developers

Benefits Of Our Web Scraping Services

Our web data extraction services bring many advantages for your business

Data Extraction & Interpretation

Data Extraction &
Interpretation

Our experts extract data for competitive analysis and research. Get deeper insights through data collated from forums, blogs, review sites, and many other sites. We harness the data collected from lists, directories, and other resources for your business’s benefits and provide the data in a format of your choice.

Get Maximum Coverage

Get Maximum
Coverage

With automated keyword searches on popular search engines such as Yahoo, Google, Bing, and more as well as real-time updates about insurance, interest rates, mortgage, etc, you get essential insights quickly and easily. We never let you miss any critical data and enable you to extract data from even complex websites.

Well-structured Data

Well-structured
Data

We never cut corners and always provide befitting solutions. Our QA processes and the expert team makes sure 100% data integrity. You can obtain data in formats like CSV, XML, JSON, etc, which is cleanly organized for quick reference. The data you get will have clear insights and easy to comprehend without much effort.

Web Data Extraction

Web Data
Extraction

Don’t be afraid of extracting data from any complicated website, we help in scraping data from all websites irrespective of their complexity. Whether it is AJAX, JavaScript, or a dynamic website, we can derive data from web pages like image, text, URL, HTML, link, etc. With our web data extraction services, you can efficiently extract your website data.

Cloud Extraction

Cloud
Extraction

We can also help you in data extraction on the cloud. Our web scraping experts can work with varied cloud platforms to extract and store data on clouds that you can easily access from anywhere in the world.

Why Should You Choose Sparx IT Solutions For Web Scraping Service?

Our seasoned web scraping experts provide unmatchable services

Quality Services Quality Services

We are an ISO certified company and provide the best quality data and technology solutions to our clients. Our clients get the advantage of proficient data experts, best scraping methodologies, dedicated teams, and the latest tools with industry best approaches of data extraction.

Talented Data Extraction Team Talented Data Extraction Team

We are an ISO certified company and provide the best quality data and technology solutions to our clients. Our clients get the advantage of proficient data experts, best scraping methodologies, dedicated teams, and the latest tools with industry best approaches of data extraction. We are a reliable web scraping company.

Proven Approach Proven Approach

Having Sparx IT Solutions as your web scraping service provider enables you to get top-of-the-line services modeled to fit all your expectations securely and timely. Our web data extraction experts use machine learning and work with the best approach to provide cost-efficient and accurate information.

We Have Served
Leading Brands Globally

What People Say About Us

 

Watch Video  

Bree Argetsinger, United States

  It has been delightful to work with Sparx IT Solutions. They offered quality solutions within my budget. I would highly recommend them, if someone is looking to hiring a website design and development company. Thanks guys.
See More Testimonials  
Google Rating
Bark Rating
Facebook Rating
Clutch Rating
Skilled Rating
WWDC Rating
Top Seos Rating
Good Firms Rating

Frequently Asked Questions

Below are some FAQs asked by clients.

1What is web scraping?

Web scraping which is also known as web data extraction, screen scraping, and web harvesting is a data extraction process where valuable data is derived from one or more sites. The data can be extracted in different formats and utilized to get important insights and information about a company or business.

2Are web scraping and data mining the same?

No, data mining and web scraping are two distinct concepts that have the same areas of application. While data mining is about finding patterns from a large dataset, web scraping is deriving useful insights from the required information collected from a site using automated processes.

3Where is web scraping used?

Web scraping is utilized in the following fields:

  • Product cataloging
  • Competitive analysis
  • Price intelligence
  • Product comparison
  • R&D of industries

4Is web scraping legal?

Yes it is as long as you follow guidelines in robot.txt, access to private and public content, terms of use etc.

Our Awards and Accolades

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Check How We Do It

technology
  "11 mins"

"Definitive Guide to Hiring the Best WordPress Developers"

technology
  "5 mins"

"7 Best WordPress Web Development Trends For 2020"

technology
  "4 mins"

"Why Should You Convert Your HTML Website Into WordPress Theme"